Published online by Cambridge University Press: 07 October 2014
Bratteli–Vershik systems have been widely studied. In the context of general zero-dimensional systems, Bratteli–Vershik systems are homeomorphisms that have Kakutani–Rohlin refinements. Bratteli diagrams are well suited to analyzing such systems. Besides this approach, general graph covers can be used to represent any zero-dimensional system. Indeed, all zero-dimensional systems can be described as certain kinds of sequences of graph covers that may not be brought about by Kakutani–Rohlin partitions. In this paper, we follow the context of general graph covers to analyze the relations between ergodic measures and circuits of graph covers. First, we formalize the condition for a sequence of graph covers to represent minimal Cantor systems. In constructing invariant measures, we deal with general compact metrizable zero-dimensional systems. In the context of Bratteli diagrams with finite rank, it has previously been mentioned that all ergodic measures should be limits of some combinations of towers of Kakutani–Rohlin refinements. We demonstrate this for the general zero-dimensional case, and develop a theorem that expresses the coincidence of the time average and the space average for ergodic measures. Additionally, we formulate a theorem that signifies the old relation between uniform convergence and unique ergodicity in the context of graph circuits for general zero-dimensional systems. Unlike previous studies, in our case of general graph covers there arises the possibility of the linear dependence of circuits. We give a condition for a full circuit system to be linearly independent. Previous research also showed that the bounded combinatorics imply unique ergodicity. We present a lemma that enables us to consider unbounded ranks of winding matrices. Finally, we present examples that are linked with a set of simple Bratteli diagrams having the equal path number property.