Published online by Cambridge University Press: 05 December 2012
Given an n-dimensional substitution Φ whose associated linear expansion Λ is unimodular and hyperbolic, we use elements of the one-dimensional integer Čech cohomology of the tiling space ΩΦ to construct a finite-to-one semi-conjugacy G:ΩΦ→𝕋D, called a geometric realization, between the substitution induced dynamics and an invariant set of a hyperbolic toral automorphism. If Λ satisfies a Pisot family condition and the rank of the module of generalized return vectors equals the generalized degree of Λ, G is surjective and coincides with the map onto the maximal equicontinuous factor of the ℝn-action on ΩΦ. We are led to formulate a higher-dimensional generalization of the Pisot substitution conjecture: if Λ satisfies the Pisot family condition and the rank of the one-dimensional cohomology of ΩΦ equals the generalized degree of Λ, then the ℝn-action on ΩΦhas pure discrete spectrum.