Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T18:35:56.756Z Has data issue: false hasContentIssue false

Geodesics on modular surfaces and continued fractions

Published online by Cambridge University Press:  13 August 2009

R. Moeckel
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A connection between the symbolic description of the geodesic flows on certain modular surfaces and the theory of continued fractions is developed. The well-known properties of these dynamical systems then lead to some new results about continued fractions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

[1]Arnold, V.. Ergodic Problems of Classical Mechanics, Appendices 20, 21. Benjamin: Reading, Ma, 1968.Google Scholar
[2]Artin, E.. Ein Mechanisches System mit quasiergodischen Bahnen. Abh. Math. Sem. Hamb. 3 (1924), 170175.CrossRefGoogle Scholar
[3]Fricke, R.. Über die Substitutionsgruppen, welche zu den aus dem Legendre'schen Integralmodul k2(ω) gezogenen Wurzeln gehören. Math. Ann. 28 (1887), 99118.CrossRefGoogle Scholar
[4]Hardy, G. H. & Wright, E. M.. An Introduction to the Theory of Numbers. Oxford University Press, 1960.Google Scholar
[5]Hedlund, G.. A Metrically Transitive Group Defined by the Modular Group. Amer. J. Math. 57 (1935), 668678.CrossRefGoogle Scholar
[6]Hopf, E.. Ergodentheorie, chapter V. Springer: Berlin, 1937.CrossRefGoogle Scholar
[7]Humbert, G.. Sur les fractions continues et les formes quadratiques binaire indéfinies. C.R. Acad. Sci. Paris. 162 (1916), 2326.Google Scholar
[8]Lehner, J.. A Short Course in Automorphic Functions. Holt, Rinehart, and Winston, New York, 1966.Google Scholar
[9]Sullivan, D.. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesies. (Preprint.)Google Scholar