Published online by Cambridge University Press: 30 June 2020
We present a new method of proving the Diophantine extremality of various dynamically defined measures, vastly expanding the class of measures known to be extremal. This generalizes and improves the celebrated theorem of Kleinbock and Margulis [Logarithm laws for flows on homogeneous spaces. Invent. Math.138(3) (1999), 451–494] resolving Sprindžuk’s conjecture, as well as its extension by Kleinbock, Lindenstrauss, and Weiss [On fractal measures and Diophantine approximation. Selecta Math.10 (2004), 479–523], hereafter abbreviated KLW. As applications we prove the extremality of all hyperbolic measures of smooth dynamical systems with sufficiently large Hausdorff dimension, and of the Patterson–Sullivan measures of all nonplanar geometrically finite groups. The key technical idea, which has led to a plethora of new applications, is a significant weakening of KLW’s sufficient conditions for extremality. In the first of this series of papers [Extremality and dynamically defined measures, part I: Diophantine properties of quasi-decaying measures. Selecta Math.24(3) (2018), 2165–2206], we introduce and develop a systematic account of two classes of measures, which we call quasi-decaying and weakly quasi-decaying. We prove that weak quasi-decay implies strong extremality in the matrix approximation framework, as well as proving the ‘inherited exponent of irrationality’ version of this theorem. In this paper, the second of the series, we establish sufficient conditions on various classes of conformal dynamical systems for their measures to be quasi-decaying. In particular, we prove the above-mentioned result about Patterson–Sullivan measures, and we show that equilibrium states (including conformal measures) of nonplanar infinite iterated function systems (including those which do not satisfy the open set condition) and rational functions are quasi-decaying.