Article contents
Dynamical degrees of Hurwitz correspondences
Published online by Cambridge University Press: 04 December 2018
Abstract
Let $\unicode[STIX]{x1D719}$ be a post-critically finite branched covering of a two-sphere. By work of Koch, the Thurston pullback map induced by $\unicode[STIX]{x1D719}$ on Teichmüller space descends to a multivalued self-map—a Hurwitz correspondence ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$—of the moduli space ${\mathcal{M}}_{0,\mathbf{P}}$. We study the dynamics of Hurwitz correspondences via numerical invariants called dynamical degrees. We show that the sequence of dynamical degrees of ${\mathcal{H}}_{\unicode[STIX]{x1D719}}$ is always non-increasing and that the behavior of this sequence is constrained by the behavior of $\unicode[STIX]{x1D719}$ at and near points of its post-critical set.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2018
References
- 3
- Cited by