Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T03:58:22.129Z Has data issue: false hasContentIssue false

Discrete analog of the projective equivalence and integrable billiard tables

Published online by Cambridge University Press:  01 October 2008

G. POPOV
Affiliation:
Laboratoire de Mathématiques Jean Leray, CNRS UMR 6629, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44072 Nantes Cedex 03, France (email: [email protected])
P. TOPALOV
Affiliation:
Department of Mathematics, Northeastern University, 360 Huntington Avenue,Boston, MA 02115, USA

Abstract

A class of discrete dynamical systems called projectively (or geodesically) equivalent Lagrangian systems is defined. We prove that these systems admit families of integrals. In the case of geodesically equivalent billiard tables, these integrals are pairwise commuting. We describe a family of geodesically equivalent billiard tables on surfaces of constant curvature. This is a special case of the so-called ‘Liouville billiard tables’.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Dragović, V., Jovanović, B. and Radnović, M.. On elliptical billiards in the Lobachevsky space and associated hierarchies. J. Geom. Phys. 47(2–3) (2003), 221234.CrossRefGoogle Scholar
[2]Guillemin, V. and Melrose, R.. An inverse spectral result for elliptical regions in R2. Adv. Math. 32 (1979), 128148.CrossRefGoogle Scholar
[3]Hörmander, L.. The Analysis of Linear Partial Differential Operators. Vol. III. Springer, Berlin, 1985.Google Scholar
[4]Kiyohara, K.. Two classes of Riemannian manifolds whose geodesic flows are integrable. Mem. Amer. Math. Soc. 130(619) (1997).CrossRefGoogle Scholar
[5]Klingenberg, W.. Riemannian Geometry (de Gruyter Studies in Mathematics, 1), rev. 2nd edn. De Gruyter, Berlin, 1995.Google Scholar
[6]Levi-Civita, T.. Sulle trasformazioni delle equazioni dinamiche. Ann. Mat., Ser. 2a 24 (1896), 255300.CrossRefGoogle Scholar
[7]Matveev, V. and Topalov, P.. Geodesic equivalence via integrability. Geom. Dedicata 96 (2003), 91115.Google Scholar
[8]Milnor, J.. Morse Theory. Princeton University Press, Princeton, NJ, 1963.Google Scholar
[9]Moser, J. and Veselov, A.. Discrete versions of some integrable systems and factorization of matrix polynomials. Comm. Math. Phys. 139 (1991), 217243.CrossRefGoogle Scholar
[10]Popov, G. and Topalov, P.. Liouville billiard tables and an inverse spectral result. Ergod. Th. & Dynam. Sys. 23 (2003), 225248.CrossRefGoogle Scholar
[11]Popov, G. and Topalov, P.. Invariants of isospectral deformations and spectral rigidity, Preliminary version in http://www.ma.utexas.edu/mp_arc/c/05/05-62.pdf.Google Scholar
[12]Popov, G. and Topalov, P.. Radon transform and spectral rigidity of Liouville billiard tables, in preparation.Google Scholar
[13]Tabachnikov, S.. Exact transverse line fields and projective billiards in a ball. Geom. Funct. Anal. 7 (1997), 594608.Google Scholar
[14]Tabachnikov, S.. Projectively equivalent metrics, exact transverse line fields and geodesic flow on the ellipsoid. Comment. Math. Helv. 74(2) (1999), 306327.Google Scholar
[15]Topalov, P.. Geodesic hierarchies and involutivity. J. Math. Phys. 42(8) (2001), 38983914.CrossRefGoogle Scholar
[16]Veselov, A.. Integrable systems with discrete time and difference operators. Funct. Anal. Appl. 22 (1988), 113.CrossRefGoogle Scholar
[17]Veselov, A.. Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space. J. Geom. Phys. 7(1) (1990), 81107.CrossRefGoogle Scholar
[18]Wolf, J.. Spaces of Constant Curvature. University of California Press, Berkeley, CA, 1972.Google Scholar