Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T00:41:40.107Z Has data issue: false hasContentIssue false

Directed harmonic currents near non-hyperbolic linearizable singularities

Published online by Cambridge University Press:  07 July 2022

ZHANGCHI CHEN*
Affiliation:
Morningside Center of Mathematics, Chinese Academy of Science, Beijing, China, http://www.mcm.ac.cn/people/postdocs/202110/t20211022_666685.html

Abstract

Let $(\mathbb {D}^2,\mathscr {F},\{0\})$ be a singular holomorphic foliation on the unit bidisc $\mathbb {D}^2$ defined by the linear vector field

$$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$

where $\unicode{x3bb} \in \mathbb {C}^*$ . Such a foliation has a non-degenerate singularity at the origin ${0:=(0,0) \in \mathbb {C}^2}$ . Let T be a harmonic current directed by $\mathscr {F}$ which does not give mass to any of the two separatrices $(z=0)$ and $(w=0)$ . Assume $T\neq 0$ . The Lelong number of T at $0$ describes the mass distribution on the foliated space. In 2014 Nguyên (see [16]) proved that when $\unicode{x3bb} \notin \mathbb {R}$ , that is, when $0$ is a hyperbolic singularity, the Lelong number at $0$ vanishes. Suppose the trivial extension $\tilde {T}$ across $0$ is $dd^c$ -closed. For the non-hyperbolic case $\unicode{x3bb} \in \mathbb {R}^*$ , we prove that the Lelong number at $0$ :

  1. (1) is strictly positive if $\unicode{x3bb}>0$ ;

  2. (2) vanishes if $\unicode{x3bb} \in \mathbb {Q}_{<0}$ ;

  3. (3) vanishes if $\unicode{x3bb} <0$ and T is invariant under the action of some cofinite subgroup of the monodromy group.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alessandrini, L. and Bassanelli, G.. Plurisubharmonic currents and their extension across analytic subsets. Forum Math. 5(6) (1993), 577602.CrossRefGoogle Scholar
Arnold, V. I. and Ilyashenko, Y. S.. Ordinary differential equations. Dynamical Systems, I (Encylopaedia of Mathematical Sciences, 1). Eds D. V. Anosov and V. I. Arnold. Springer, Berlin, 1988, pp. 1148.Google Scholar
Berndtsson, B. and Sibony, N.. The $\bar{\partial }$ -equation on a positive current. Invent. Math. 147 (2002), 371428.CrossRefGoogle Scholar
Brjuno, A. D.. A Local Method of Nonlinear Analysis for Differential Equations. Nauka, Moscow, 1979.Google Scholar
Brunella, M.. Birational Geometry of Foliations (IMPA Monographs, 1). Springer, Cham, 2015.CrossRefGoogle Scholar
Dinh, T. C., Nguyên, V. A. and Sibony, N.. Heat equation and ergodic theorems for Riemann surface laminations. Math. Ann. 354(1) (2012), 331376.CrossRefGoogle Scholar
Dinh, T. C., Nguyên, V. A. and Sibony, N.. Unique ergodicity for foliations on compact Kähler surfaces. Duke Math. J. to appear.Google Scholar
Dinh, T. C. and Sibony, N.. Unique ergodicity for foliations in ${\mathbb{P}}^2$ with an invariant curve. Invent. Math. 211(1) (2018), 138.CrossRefGoogle Scholar
Dinh, T. C. and Sibony, N.. Some open problems on holomorphic foliation theory. Acta Math. Vietnam. 45(1) (2020), 103112.CrossRefGoogle Scholar
Dinh, T. C. and Wu, H.. Harmonic currents directed by foliations by Riemann surfaces. Proc. Amer. Math. Soc. 149(8) (2021), 34533461.CrossRefGoogle Scholar
Fornæss, J. E. and Sibony, N.. Riemann surface laminations with singularities. J. Geom. Anal. 18(2) (2008), 400442.CrossRefGoogle Scholar
Fornæss, J. E. and Sibony, N.. Unique ergodicity of harmonic currents on singular foliations of ${\mathbb{P}}^2$ . Geom. Funct. Anal. 19(5) (2010), 13341377.10.1007/s00039-009-0043-1CrossRefGoogle Scholar
Fornæss, J. E., Sibony, N. and Wold, E. F.. Examples of minimal laminations and associated currents. Math. Z. 269(1–2) (2011), 495520.10.1007/s00209-010-0747-9CrossRefGoogle Scholar
Lee, E. F.. The structure and topology of the Brjuno numbers. Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT) (Topology Proceedings, 24). Ed. G. Gruenhage. Auburn University, Auburn, AL, 1999, pp. 189201.Google Scholar
Nguyên, V. A.. Oseledec multiplicative ergodic theorem for laminations. Mem. Amer. Math. Soc. 246(1164) (2017).Google Scholar
Nguyên, V. A.. Directed harmonic currents near hyperbolic singularities. Ergod. Th. & Dynam. Sys. 38(8) (2018), 31703187.10.1017/etds.2017.2CrossRefGoogle Scholar
Nguyên, V. A.. Ergodic theory for Riemann surface laminations: a survey. Geometric Complex Analysis (Springer Proceedings in Mathematics & Statistics, 246). Eds J. Byun, H. Cho, S. Kim, K. H. Lee and J. D. Park. Springer, Singapore, 2018, pp. 291327.10.1007/978-981-13-1672-2_22CrossRefGoogle Scholar
Nguyên, V. A.. Ergodic theorems for laminations and foliations: recent results and perspectives. Acta Math. Vietnam. 46(1) (2021), 9101.CrossRefGoogle Scholar
Nguyên, V. A.. Singular holomorphic foliations by curves. III: Zero Lelong numbers. Preprint, 2022, arXiv:2009.06566v2.10.1007/s00208-023-02618-6CrossRefGoogle Scholar
Nguyên, V. A.. Singular holomorphic foliations by curves I: Integrability of holonomy cocycle in dimension 2. Invent. Math. 212(2) (2018), 531618.CrossRefGoogle Scholar
Seidenberg, A.. Reduction of singularities of the differential equation $\ Ady = Bdx$ . Amer. J. Math. 90 (1968), 248269.CrossRefGoogle Scholar
Skoda, H.. Prolongement des courants, positifs, fermés de masse finie [Extension of closed, positive currents of finite mass]. Invent. Math. 66(3) (1982), 361376 (in French)CrossRefGoogle Scholar