Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T00:46:11.653Z Has data issue: false hasContentIssue false

A counterexample to the composition condition conjecture for polynomial Abel differential equations

Published online by Cambridge University Press:  13 March 2018

JAUME GINÉ
Affiliation:
Departament de Matemàtica, Inspires Research Centre, Universitat de Lleida, Avda Jaume II, 69; 25001 Lleida, Catalonia, Spain email [email protected], [email protected], [email protected]
MAITE GRAU
Affiliation:
Departament de Matemàtica, Inspires Research Centre, Universitat de Lleida, Avda Jaume II, 69; 25001 Lleida, Catalonia, Spain email [email protected], [email protected], [email protected]
XAVIER SANTALLUSIA
Affiliation:
Departament de Matemàtica, Inspires Research Centre, Universitat de Lleida, Avda Jaume II, 69; 25001 Lleida, Catalonia, Spain email [email protected], [email protected], [email protected]

Abstract

Polynomial Abel differential equations are considered a model problem for the classical Poincaré center–focus problem for planar polynomial systems of ordinary differential equations. In the last few decades, several works pointed out that all centers of the polynomial Abel differential equations satisfied the composition conditions (also called universal centers). In this work we provide a simple counterexample to this conjecture.

Type
Original Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alwash, M. A. M.. On a condition for a center of cubic non-autonomous equations. Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), 289291.Google Scholar
Alwash, M. A. M.. On the composition conjectures. Electron. J. Differential Equations 2003(69) (2003), 4 pp.Google Scholar
Alwash, M. A. M.. The composition conjecture for Abel equation. Expo. Math. 27(3) (2009), 241250.Google Scholar
Alwash, M. A. M. and Lloyd, N. G.. Non-autonomous equations related to polynomial two-dimensional systems. Proc. Roy. Soc. Edinburgh Sect. A 105 (1986), 129152.Google Scholar
Blinov, M. and Yomdin, Y.. Generalized center conditions and multiplicities for polinomial Abel equations of small degrees. Nonlinearity 12 (1999), 10131028.Google Scholar
Briskin, M., Françoise, J. P. and Yomdin, Y.. Center conditions, compositions of polynomials and moments on algebraic curves. Ergod. Th. & Dynam. Sys. 19 (1999), 12011220.Google Scholar
Briskin, M., Françoise, J. P. and Yomdin, Y.. Center conditions. II. Parametric and model center problems. Israel J. Math. 118 (2000), 6182.Google Scholar
Briskin, M., Françoise, J. P. and Yomdin, Y.. Center conditions. III. Parametric and model center problems. Israel J. Math. 118 (2000), 83108.Google Scholar
Briskin, M., Roytvarf, N. and Yomdin, Y.. Center conditions at infinity for Abel differential equations. Ann. of Math. (2) 172(1) (2010), 437483.Google Scholar
Brudnyi, A.. An explicit expression for the first return map in the center problem. J. Differential Equations 206(2) (2004), 306314.Google Scholar
Brudnyi, A.. An algebraic model for the center problem. Bull. Sci. Math. 128(10) (2004), 839857.Google Scholar
Brudnyi, A.. On the center problem for ordinary differential equations. Amer. J. Math. 128 (2006), 419451.Google Scholar
Cima, A., Gasull, A. and Mañosas, F.. Centers for trigonometric Abel equations. Qual. Theory Dyn. Syst. 11(1) (2012), 1937.Google Scholar
Cima, A., Gasull, A. and Mañosas, F.. A simple solution of some conjectures for Abel equations. J. Math. Anal. Appl. 398 (2013), 477486.Google Scholar
Cima, A., Gasull, A. and Mañosas, F.. An explicit bound of the number of vanishing double moments forcing composition. J. Differential Equations 255(3) (2013), 339350.Google Scholar
Giné, J., Grau, M. and Llibre, J.. Universal centers and composition conditions. Proc. Lond. Math. Soc. (3) 106 (2013), 481507.Google Scholar
Giné, J., Grau, M. and Santallusia, X.. Composition conditions in the trigonometric Abel equations. J. Appl. Anal. Comput. 3(2) (2013), 133144.Google Scholar
Giné, J., Grau, M. and Santallusia, X.. Universal centers in the cubic trigonometric Abel equation. Electron. J. Qual. Theory Differ. Equ. 2014(1) (2014), 17.Google Scholar
Giné, J., Grau, M. and Santallusia, X.. The center problem and composition condition for Abel differential equations. Expo. Math. 34(2) (2016), 210222.Google Scholar
Giné, J. and Santallusia, X.. Abel differential equations admitting a certain first integral. J. Math. Anal. Appl. 370(1) (2010), 187199.Google Scholar