Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-04T19:33:49.641Z Has data issue: false hasContentIssue false

A characterization of ω-limit sets of maps of the interval with zero topological entropy

Published online by Cambridge University Press:  19 September 2008

A. M. Bruckner
Affiliation:
Department of Mathematics, University of California, Santa Barbara, CA 931-06, USA
J. Smítal
Affiliation:
Institute of Mathematics, Comenius University, 84215 Bratislava, and Institute of Mathematics, Silesian University, 74601 Opava, Czechoslovakia

Abstract

We prove that an infinite W ⊂ (0, 1) is an ω-limit set for a continuous map ƒ of [0,1] with zero topological entropy iff W = QP where Q is a Cantor set, and P is countable, disjoint from Q, dense in W if non-empty, and such that for any interval J contiguous to Q, card (JP) ≤ 1 if 0 or 1 is in J, and card (JP) ≤ 2 otherwise. Moreover, we prove a conjecture by A. N. Šarkovskii from 1967 that P can contain points from infinitely many orbits, and consequently, that the system of ω-limit sets containing Q and contained in W, can be uncountable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[ABCP]Agronsky, S. J., Bruckner, A. M., Ceder, J. G. & Pearson, T. L.. The structure of ω-limit sets for continous functions. Real Analysis Exchange 15 (19891990), 483510.CrossRefGoogle Scholar
[B]Block, L. S.. Simple periodic orbits of mappings of the interval. Trans. Amer. Math. Soc. 254 (1979), 391398.Google Scholar
[BC]Bruckner, A.M. & Ceder, J.. Chaos in terms of the map x→ω(x, f). Pacific J. Math. 156 (1992) 6396.CrossRefGoogle Scholar
[BIC]Block, L. S. & Coven, E. M., ω-limit sets for maps of the interval. Ergod. Th. & Dynam. Sys. 6 (1985), 335344.CrossRefGoogle Scholar
[BC]Bruckner, A. M. & Smital, J.. The structure of ω-limit sets for continuous maps of the interval. Math. Bohemica 117 (1992), 4247.CrossRefGoogle Scholar
[CX]Chu, H. & Xiong, J. C.. A counterexample in dynamical systems. Proc. Amer. Math. Soc. 97 (1986), 361366.CrossRefGoogle Scholar
[D]Denjoy, A.. Sur les courbes définies par équations différentielles à la surface du tore. J. Math. Pures Appl. (9), 11 (1932), 333375.Google Scholar
[FSS]Fedorenko, V. V., Šarkovskii, A. N. & Smítal, J.. Characterization of weakly chaotic maps of the interval. Proc. Amer. Math. Soc. 110 (1990), 141148.CrossRefGoogle Scholar
[H]Harrison, J.. Wandering intervals. Dynamical systems and turbulence (Warwick 1980). Springer Lecture Notes in Mathematics 898. Springer, Berlin, 1981, 154163.Google Scholar
[K]Kirchheim, B.. A chotic function with zero topological entropy having non-perfect attractors. Math. Slovaca 40 (1990), 267272.Google Scholar
[KŠ]Kenžegulov, Ch. K. and Šarkovskii, A. N.. On properties of the set of limit points of an iterated sequence of a continuous function. Volž Mat. Sb. 3 (1965), 343348 (Russian).Google Scholar
[LY]Li, T. Y. & Yorke, J.. Period three implies chaos. Amer. Math. Monthly 82 (1975), 985992.CrossRefGoogle Scholar
[M]Misiurewicz, M.. Invariant measures for continuous transformations of [0, 1] with zero topological entropy, Ergodic Theory (Oberwolfach 1978), Springer Lecture Notes in Mathematics 729, Springer, Berlin, 1979, 144152.CrossRefGoogle Scholar
[S]Smital, J.. Chaotic maps with zero topological entropy. Trans. Amer. Math. Soc. 297 (1986), 269282.CrossRefGoogle Scholar
[Ša1]Šarkovskii, A. N.. The partially ordered system of attracting sets. Dokl. Akad. Nauk. USSR 170 (1966), 12761278.Google Scholar
[Ša2]Šarkovskii, A. N.. Attracting sets containing no cycles. Ukrain. Mat. Ž. 20 (1968), 136142. (Russian)Google Scholar
[Ša3]Šarkovskii, A. N.. A mapping of zero topological entropy possessing continuum of Cantor minimal sets. Dynamical Systems and Turbulence. Akad. Nauk USSR, Inst. of Math., Kiev, 1989, 109117 (Russian).Google Scholar
[VŠ]Verejkina, M. B. & Šarkovskii, A. N.. Recurrence in one-dimensional dynamical systems. Approx. and Qualitative Methods of the Theory of Differential-Functional Equations. Inst. Mat. Akad. Nauk USSR, Kiev 1983, 3546 (Russian).Google Scholar