Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T12:02:31.294Z Has data issue: false hasContentIssue false

Cesàro mean distribution of group automata starting from measures with summable decay

Published online by Cambridge University Press:  01 December 2000

PABLO A. FERRARI
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281, 05315-970 São Paulo, Brasil (e-mail: [email protected])
ALEJANDRO MAASS
Affiliation:
Departamento de Ingeniería Matemática, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Casilla 170-3, Correo 3, Santiago, Chile (e-mail: {amaass, smartine}@dim.uchile.cl)
SERVET MARTÍNEZ
Affiliation:
Departamento de Ingeniería Matemática, Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, Casilla 170-3, Correo 3, Santiago, Chile (e-mail: {amaass, smartine}@dim.uchile.cl)
PETER NEY
Affiliation:
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA (e-mail: [email protected])

Abstract

Consider a finite Abelian group $(G,+)$, with $|G|=p^r$, $p$ a prime number, and $\varphi: G^\mathbb{N} \to G^\mathbb{N}$ the cellular automaton given by $(\varphi x)_n=\mu x_n+\nu x_{n+1}$ for any $n\in \mathbb{N}$, where $\mu$ and $\nu$ are integers coprime to $p$. We prove that if $\mathbb{P}$ is a translation invariant probability measure on $G^\mathbb{Z}$ determining a chain with complete connections and summable decay of correlations, then for any ${\underline w}= (w_i:i<0)$the Cesàro mean distribution $${\cal M}_{\mathbb{P}_{\underline w}} =\lim_{M\to\infty} \frac{1}{M} \sum^{M-1}_{m=0}\mathbb{P}_{\underline w}\circ\varphi^{-m},$$ where $\mathbb{P}_{\underline w}$ is the measure induced by $\mathbb{P}$ on $G^\mathbb{N}$ conditioned by $\underline w$, exists and satisfies ${\cal M}_{\mathbb{P}_{\underline w}}=\lambda^\mathbb{N}$, the uniform product measure on $G^\mathbb{N}$. The proof uses a regeneration representation of $\mathbb{P}$.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)