Published online by Cambridge University Press: 25 March 2019
Let $(X_{A},\unicode[STIX]{x1D70E}_{A})$ be a shift of finite type and $\text{Aut}(\unicode[STIX]{x1D70E}_{A})$ its corresponding automorphism group. Associated to $\unicode[STIX]{x1D719}\in \text{Aut}(\unicode[STIX]{x1D70E}_{A})$ are certain Lyapunov exponents $\unicode[STIX]{x1D6FC}^{-}(\unicode[STIX]{x1D719}),\unicode[STIX]{x1D6FC}^{+}(\unicode[STIX]{x1D719})$, which describe asymptotic behavior of the sequence of coding ranges of $\unicode[STIX]{x1D719}^{n}$. We give lower bounds on $\unicode[STIX]{x1D6FC}^{-}(\unicode[STIX]{x1D719}),\unicode[STIX]{x1D6FC}^{+}(\unicode[STIX]{x1D719})$ in terms of the spectral radius of the corresponding action of $\unicode[STIX]{x1D719}$ on the dimension group associated to $(X_{A},\unicode[STIX]{x1D70E}_{A})$. We also give lower bounds on the topological entropy $h_{\text{top}}(\unicode[STIX]{x1D719})$ in terms of a distinguished part of the spectrum of the action of $\unicode[STIX]{x1D719}$ on the dimension group, but show that, in general, $h_{\text{top}}(\unicode[STIX]{x1D719})$ is not bounded below by the logarithm of the spectral radius of the action of $\unicode[STIX]{x1D719}$ on the dimension group.