Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-03T19:14:22.946Z Has data issue: false hasContentIssue false

An algorithm for sofic shift equivalence*

Published online by Cambridge University Press:  19 September 2008

K. H. Kim
Affiliation:
Mathematics Research Group, Alabama State University, Montgomery, Alabama 36195, USA
F. W. Roush
Affiliation:
Mathematics Research Group, Alabama State University, Montgomery, Alabama 36195, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the decidability of shift equivalence of sofic systems and discuss algebraic invariants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

REFERENCES

[1]Boyle, M. & Krieger, W.. Almost Markov and shift equivalent sofic systems. Dynamical Systems (Proceedings, University of Maryland 19861987), ed. Alexander, J. C., Springer: New York, 1988, pp. 3393.Google Scholar
[2]Clifford, A. & Preston, G.. The Algebraic Theory of Semigroups. Amer. Math.: Providence, R.I., 1961.Google Scholar
[3]Hamachi, T. & Nasu, M.. Topological conjugacy for 1-block factor maps of subshifts and sofic covers. Dynamical Systems (Proceedings, University of Maryland 19861987), ed. Alexander, J. C., Springer: New York, 1988. pp. 251260.Google Scholar
[4]Kim, K. H. & Roush, F. W.. Decidability of shift equivalence. Dynamical Systems (Proceedings, University of Maryland 19861987), ed. Alexander, J. C., Springer: New York, 1988. pp. 374424.Google ScholarPubMed
[5]Nasu, M.. Topological conjugacy for sofic systems. Ergod. Th. & Dynam. Sys. 6 (1986), 265280.CrossRefGoogle Scholar