Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T04:07:15.511Z Has data issue: false hasContentIssue false

The actions of ${\mathit{Out}(F_k)}$ on the boundary of Outer space and on the space of currents: minimal sets and equivariant incompatibility

Published online by Cambridge University Press:  20 April 2007

ILYA KAPOVICH
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA (e-mail: [email protected])
MARTIN LUSTIG
Affiliation:
Mathématiques (LATP), Université Paul Cézanne–Aix Marseille III, av. E. Normandie-Niémen, 13397 Marseille 20, France (e-mail: [email protected])

Abstract

We prove that for $k\ge 5$ there does not exist a continuous map $\partial CV(F_k)\to\mathbb P\mathit{Curr}(F_k)$ that is either $\mathit{Out}(F_k)$-equivariant or $\mathit{Out}(F_k)$-anti-equivariant. Here $\partial CV(F_k)$ is the ‘length function’ boundary of Culler–Vogtmann's Outer space $CV(F_k)$, and $\mathbb P\mathit{Curr}(F_k)$ is the space of projectivized geodesic currents for $F_{k}$. We also prove that, if $k\ge 3$, for the action of $\mathit{Out}(F_k)$ on $\mathbb P\mathit{Curr}(F_{k})$ and for the diagonal action of $\mathit{Out}(F_k)$ on the product space $\partial CV(F_k)\times \mathbb P\mathit{Curr}(F_k)$, there exist unique non-empty minimal closed $\mathit{Out}(F_k)$-invariant sets. Our results imply that for $k\ge 3$ any continuous $\mathit{Out}(F_k)$-equivariant embedding of $CV(F_k)$ into $\mathbb P\mathit{Curr}(F_k)$ (such as the Patterson–Sullivan embedding) produces a new compactification of Outer space, different from the usual ‘length function” compactification $\overline{CV(F_k)}=CV(F_k)\cup \partial CV(F_k)$.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)