Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T04:26:19.581Z Has data issue: false hasContentIssue false

Uniform convergence in the mapping class group

Published online by Cambridge University Press:  01 August 2008

RICHARD P. KENT IV
Affiliation:
Department of Mathematics, Brown University, Providence, RI 02912, USA (email: [email protected])
CHRISTOPHER J. LEININGER
Affiliation:
Department of Mathematics, University of Illinois, Urbana-Champaign, IL 61801, USA (email: [email protected])

Abstract

We characterize convex cocompact subgroups of the mapping class group of a surface in terms of uniform convergence actions on the zero locus of the limit set. We also construct subgroups that act as uniform convergence groups on their limit sets, but are not convex cocompact.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Anderson, J. W., Aramayona, J. and Shackleton, K. J.. A simple criterion for non-relative hyperbolicity and one-endedness of groups. J. Group Theory 10(6) (2007), 749756.Google Scholar
[2]Behrstock, J., Drutu, C. and Mosher, L.. Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity. Preprint, 2005, arXiv:math.GT/0512592.Google Scholar
[3]Bowditch, B. H.. Convergence groups and configuration spaces. Geometric Group Theory Down Under (Canberra, 1996). de Gruyter, Berlin, 1999, pp. 2354.Google Scholar
[4]Bowditch, B. H.. A topological characterisation of hyperbolic groups. J. Amer. Math. Soc. 11(3) (1998), 643667.CrossRefGoogle Scholar
[5]Brock, J. and Farb, B.. Curvature and rank of Teichmüller space. Amer. J. Math. 128(1) (2006), 122.CrossRefGoogle Scholar
[6]Casson, A. J. and Bleiler, S. A.. Automorphisms of Surfaces After Nielsen and Thurston (London Mathematical Society Student Texts, 9). Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
[7]Farb, B. and Mosher, L.. Convex cocompact subgroups of mapping class groups. Geom. Topol. 6 (2002), 91152 (electronic).CrossRefGoogle Scholar
[8]Fenley, S. and Mosher, L.. Uniform convergence actions and hyperbolicity. Work in progress.Google Scholar
[9]Freden, E. M.. Negatively curved groups have the convergence property. I. Ann. Acad. Sci. Fenn. Ser. A I Math. 20(2) (1995), 333348.Google Scholar
[10]Gardiner, F. P. and Masur, H.. Extremal length geometry of Teichmüller space. Complex Var. Theory Appl. 16(2–3) (1991), 209237.Google Scholar
[11]Gehring, F. W. and Martin, G. J.. Discrete quasiconformal groups. I. Proc. London Math. Soc. (3) 55(2) (1987), 331358.CrossRefGoogle Scholar
[12]Hamenstädt, U.. Word hyperbolic extensions of surface groups. Preprint, 2005, arXiv:math.GT/0505244.Google Scholar
[13]Ivanov, N. V.. Subgroups of Teichmüller Modular Groups (Translations of Mathematical Monographs, 115). American Mathematical Society, Providence, RI, 1992 (Translated from the Russian by E. J. F. Primrose and revised by the author).CrossRefGoogle Scholar
[14]Kent IV, R. P. and Leininger, C. J.. Shadows of mapping class groups: capturing convex cocompactness. Geom. Funct. Anal. to appear. Preprint, 2005, arXiv:math.GT/0505114.Google Scholar
[15]Klarreich, E.. The boundary at infinity of the curve complex and the relative Teichmüller space. Preprint, http://nasw.org/users/klarreich/publications.htm.Google Scholar
[16]Masur, H.. On a class of geodesics in Teichmüller space. Ann. of Math. (2) 102(2) (1975), 205221.CrossRefGoogle Scholar
[17]Masur, H.. Transitivity properties of the horocyclic and geodesic flows on moduli space. J. Anal. Math. 39 (1981), 110.CrossRefGoogle Scholar
[18]Masur, H.. Interval exchange transformations and measured foliations. Ann. of Math. (2) 115(1) (1982), 169200.CrossRefGoogle Scholar
[19]Masur, H.. Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math. J. 66(3) (1992), 387442.CrossRefGoogle Scholar
[20]Masur, H. A. and Minsky, Y. N.. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1) (1999), 103149.CrossRefGoogle Scholar
[21]Masur, H. A. and Minsky, Y. N.. Geometry of the complex of curves. II. Hierarchical structure. Geom. Funct. Anal. 10(4) (2000), 902974.CrossRefGoogle Scholar
[22]Masur, H. A. and Wolf, M.. Teichmüller space is not Gromov hyperbolic. Ann. Acad. Sci. Fenn. Ser. A I Math. 20(2) (1995), 259267.Google Scholar
[23]McCarthy, J. and Papadopoulos, A.. Dynamics on Thurston’s sphere of projective measured foliations. Comment. Math. Helv. 64(1) (1989), 133166.CrossRefGoogle Scholar
[24]Rafi, K.. A characterization of short curves of a Teichmüller geodesic. Geom. Topol. 9 (2005), 179202.CrossRefGoogle Scholar
[25]Tukia, P.. Convergence groups and Gromov’s metric hyperbolic spaces. New Zealand J. Math. 23(2) (1994), 157187.Google Scholar