Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T03:06:03.832Z Has data issue: false hasContentIssue false

Sur le spectre des opérateurs rigides

Published online by Cambridge University Press:  01 March 2022

PIERRE MAZET
Affiliation:
Independent Scholar (e-mail: [email protected])
ERIC SAIAS*
Affiliation:
Sorbonne Université, Laboratoire de Probabilités, Statistique et Modélisation (LPSM) 4, place Jussieu, 75252 Paris Cedex 05, France

Abstract

For any $r\in [0,1]$ we give an example of a rigid operator whose spectrum is the annulus $\{\lambda\in \mathbb{C} : r \le |\lambda| \le 1 \} $ . In particular, when $r=0$ this operator is rigid and non-invertible, and when $r\in {\kern1pt}] 0,1 [ $ this operator is invertible but its inverse is not rigid. This answers two questions of Costakis, Manoussos and Parissis [Recurrent linear operators. Complex Anal. Oper. Theory 8 (2014), 1601–1643].

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Pour Mustapha Krazem, à l’occasion de son soixantiéme anniversaire

References

Bayart, F. and Matheron, E.. Dynamics of Linear Operators (Cambridge Tracts in Mathematics, 179).Cambridge University Press, Cambridge, 2009.CrossRefGoogle Scholar
Costakis, G., Manoussos, A. and Parissis, I..Recurrent linear operators. Complex Anal. Oper. Theory 8 (2014),16011643.CrossRefGoogle Scholar
Grivaux, S. and Roginskaya, M.. On Read’s type operators on Hilbert spaces. Int. Math. Res.Not. IMRN 2008 (2008), rnn083.Google Scholar
Halmos, P.. A Hilbert Space Problem Book (Graduate Texts inMathematics, 19), 2nd edn. Springer-Verlag, New York,1982.CrossRefGoogle Scholar
Müller, V.. Local spectral radius formula for operators in Banachspaces. Czechoslovak Math. J. 38 (1988),726729.CrossRefGoogle Scholar