Published online by Cambridge University Press: 11 October 2018
Let $X$ be a solenoid, i.e. a compact, finite-dimensional, connected abelian group with normalized Haar measure
$\unicode[STIX]{x1D707}$, and let
$\unicode[STIX]{x1D6E4}\rightarrow \operatorname{Aff}(X)$ be an action of a countable discrete group
$\unicode[STIX]{x1D6E4}$ by continuous affine transformations of
$X$. We show that the probability measure preserving action
$\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ does not have the spectral gap property if and only if there exists a
$p_{\text{a}}(\unicode[STIX]{x1D6E4})$-invariant proper subsolenoid
$Y$ of
$X$ such that the image of
$\unicode[STIX]{x1D6E4}$ in
$\operatorname{Aff}(X/Y)$ is a virtually solvable group, where
$p_{\text{a}}:\operatorname{Aff}(X)\rightarrow \operatorname{Aut}(X)$ is the canonical projection. When
$\unicode[STIX]{x1D6E4}$ is finitely generated or when
$X$ is the
$a$-adic solenoid for an integer
$a\geq 1$, the subsolenoid
$Y$ can be chosen so that the image
$\unicode[STIX]{x1D6E4}$ in
$\operatorname{Aff}(X/Y)$ is a virtually abelian group. In particular, an action
$\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ by affine transformations on a solenoid
$X$ has the spectral gap property if and only if
$\unicode[STIX]{x1D6E4}\curvearrowright (X,\unicode[STIX]{x1D707})$ is strongly ergodic.