Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-24T14:41:33.540Z Has data issue: false hasContentIssue false

Quasisymmetrically rigid self-similar carpets

Published online by Cambridge University Press:  22 October 2024

FENG RAO
Affiliation:
School of Mathematics Statistics, Hubei University of Science Technology, Xianning 437100, Hubei, China (e-mail: [email protected])
FAN WEN*
Affiliation:
Department of Mathematics, Jinan University, Guangzhou 510632, China

Abstract

We define balanced self-similar quasi-round carpets and compare the carpet moduli of some path families relating to such a carpet. Then, using some known results on quasiconformal geometry of carpets, we prove that the group of quasisymmetric self-homeomorphisms of every balanced self-similar quasi-round carpet is finite. Furthermore, we prove that some balanced self-similar carpets in the unit square with strong geometric symmetry are quasisymmetrically rigid by using the quasisymmetry of weak tangents of carpets.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bonk, M.. Quasiconformal geometry of fractals. Proceedings of the International Congress of Mathematicians. Volume II. Ed. M. Sanz-Solé, J. Soria, J. L. Varona and J. Verdera. European Mathematical Society, Zürich, 2006, pp. 13491373.Google Scholar
Bonk, M.. Uniformization of Sierpiński carpets in the plane. Invent. Math. 186 (2011), 559665.CrossRefGoogle Scholar
Bonk, M., Kleiner, B. and Merenkov, S.. Rigidity of Schottky sets. Amer. J. Math. 131 (2009), 409443.CrossRefGoogle Scholar
Bonk, M. and Merenkov, S.. Quasisymmetric rigidity of square Sierpiński carpets. Ann. of Math. (2) 177 (2013), 591643.CrossRefGoogle Scholar
Bonk, M. and Merenkov, S.. Square Sierpiński carpets and lattès maps. Math. Z. 12 (2020), 296.Google Scholar
Falconer, K.. Fractal Geometry: Mathematical Foundations and Applications. John Wiley and Sons, Hoboken, NJ, 1990.Google Scholar
Heinonen, J.. Lectures on Analysis on Metric Spaces (Universitext). Springer-Verlag, New York, 2001.CrossRefGoogle Scholar
Keith, S. and Laakso, T.. Conformal Assouad dimension and modulus. Geom. Funct. Anal. 14 (2004), 12781321.CrossRefGoogle Scholar
Mackay, J., Tyson, J. T. and Wildrick, K.. Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets. Geom. Funct. Anal. 23 (2013), 9851034.CrossRefGoogle Scholar
Merenkov, S.. A Sierpiński carpet with the co-Hopfian property. Invent. Math. 180 (2010), 361388.CrossRefGoogle Scholar
Merenkov, S.. Planar relative Schottky sets and quasisymmetric maps. Proc. Lond. Math. Soc. (3) 104 (2012), 455485.CrossRefGoogle Scholar
Schramm, O.. Transboundary extremal length. J. Anal. Math. 66 (1995), 307329.CrossRefGoogle Scholar
Tukia, P. and Väisälä, J.. Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97114.CrossRefGoogle Scholar
Väisälä, J.. Lectures on $n$ -Dimensional Quasiconformal Mappings. Springer-Verlag, New York, 1971.Google Scholar
Whyburn, G. T.. Topological characterization of the Sierpiński curve. Fund. Math. 45 (1958), 320324.CrossRefGoogle Scholar
Zeng, J. S. and Su, W. X.. Quasisymmetric rigidity of Sierpiński carpets ${F}_{n,p}$ . Ergod. Th. & Dynam. Sys. 35 (2015), 16581680.CrossRefGoogle Scholar