Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T04:00:04.546Z Has data issue: false hasContentIssue false

On the sharp regularity for arbitrary actions of nilpotent groups on the interval: the case of $N_{4}$

Published online by Cambridge University Press:  28 July 2016

EDUARDO JORQUERA
Affiliation:
Instituto de Matemática, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Cerro Barón, Valparaíso, Chile email [email protected]
ANDRÉS NAVAS
Affiliation:
Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile email [email protected], [email protected]
CRISTÓBAL RIVAS
Affiliation:
Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile email [email protected], [email protected]

Abstract

In this work, we determine the largest $\unicode[STIX]{x1D6FC}$ for which the nilpotent group of four-by-four triangular matrices with integer coefficients and the value one in the diagonal embeds into the group of $C^{1+\unicode[STIX]{x1D6FC}}$ diffeomorphisms of the closed interval.

Type
Research Article
Copyright
© Cambridge University Press, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonatti, C., Monteverde, I., Navas, A. and Rivas, C.. Rigidity for $C^{1}$ actions on the interval arising from hyperbolicity I: solvable groups. Preprint, 2013, arXiv:1309.5277.Google Scholar
Castro, G., Jorquera, E. and Navas, A.. Sharp regularity of certain nilpotent group actions on the interval. Math. Ann. 359 (2014), 101152.Google Scholar
Deroin, B., Kleptsyn, V. and Navas, A.. Sur la dynamique unidimensionnelle en régularité intermediaire. Acta Math. 199 (2007), 199262.Google Scholar
Deroin, B., Navas, A. and Rivas, C.. Groups, orders, and dynamics. Preprint, 2014, arXiv:1408.5805.Google Scholar
Farb, B. and Franks, J.. Groups of homeomorphisms of one-manifolds III: nilpotent subgroups. Ergod. Th. & Dynam. Sys. 5 (2003), 14671484.Google Scholar
Harrison, J.. Unsmoothable diffeomorphisms on higher dimensional manifolds. Trans. Amer. Math. Soc. 73 (1979), 249255.Google Scholar
Jorquera, E.. A universal nilpotent group of C 1 diffeomorphisms of the interval. Topology Appl. 159 (2012), 21152126.Google Scholar
Navas, A.. A finitely-generated, locally-indicable group with no faithful action by C 1 diffeomorphisms of the interval. Geom. Topol. 14 (2010), 573584.CrossRefGoogle Scholar
Navas, A.. Groups of Circle Diffeomorphisms (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, IL, 2011.CrossRefGoogle Scholar
Navas, A.. On centralizers of interval diffeomorphisms in critical (intermediate) regularity. J. Anal. Math. 121 (2013), 2130.CrossRefGoogle Scholar
Parkhe, K.. Nilpotent dynamics in dimension one: structure and smoothness. Ergod. Th. & Dynam. Sys., to appear. Published online 15 June 2015, doi:10.1017/etds.2015.8.Google Scholar
Pixton, D.. Nonsmoothable, unstable group actions. Trans. Amer. Math. Soc. 229 (1977), 259268.Google Scholar
Plante, J.. On solvable groups acting on the real line. Trans. Amer. Math. Soc. 278 (1983), 401414.Google Scholar
Plante, J. and Thurston, W.. Polynomial growth in holonomy groups of foliations. Comment. Math. Helv. 51 (1976), 567584.Google Scholar
Thurston, W.. A generalization of the Reeb stability theorem. Topology 13 (1974), 347352.CrossRefGoogle Scholar
Tsuboi, T.. Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle. J. Math. Soc. Japan 47 (1995), 125.Google Scholar