Article contents
On the conservative pasting lemma
Published online by Cambridge University Press: 17 October 2018
Abstract
Several perturbation tools are established in the volume-preserving setting allowing for the pasting, extension, localized smoothing and local linearization of vector fields. The pasting and the local linearization hold in all classes of regularity ranging from $C^{1}$ to $C^{\infty }$ (Hölder included). For diffeomorphisms, a conservative linearized version of Franks’ lemma is proved in the $C^{r,\unicode[STIX]{x1D6FC}}$ ($r\in \mathbb{Z}^{+}$, $0<\unicode[STIX]{x1D6FC}<1$) and $C^{\infty }$ settings, the resulting diffeomorphism having the same regularity as the original one.
Keywords
MSC classification
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2018
References
- 4
- Cited by