Article contents
On self-similar measures with absolutely continuous projections and dimension conservation in each direction
Published online by Cambridge University Press: 26 June 2019
Abstract
Relying on results due to Shmerkin and Solomyak, we show that outside a zero-dimensional set of parameters, for every planar homogeneous self-similar measure $\unicode[STIX]{x1D708}$, with strong separation, dense rotations and dimension greater than $1$, there exists $q>1$ such that $\{P_{z}\unicode[STIX]{x1D708}\}_{z\in S}\subset L^{q}(\mathbb{R})$. Here $S$ is the unit circle and $P_{z}w=\langle z,w\rangle$ for $w\in \mathbb{R}^{2}$. We then study such measures. For instance, we show that $\unicode[STIX]{x1D708}$ is dimension conserving in each direction and that the map $z\rightarrow P_{z}\unicode[STIX]{x1D708}$ is continuous with respect to the weak topology of $L^{q}(\mathbb{R})$.
- Type
- Original Article
- Information
- Copyright
- © Cambridge University Press, 2019
References
- 1
- Cited by