Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:08:09.194Z Has data issue: false hasContentIssue false

Odometer actions on G-measures

Published online by Cambridge University Press:  19 September 2008

Gavin Brown
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington, NSW, Australia
Anthony H. Dooley
Affiliation:
School of Mathematics, University of New South Wales, PO Box 1, Kensington, NSW, Australia

Abstract

The introduction of results from harmonic analysis leads to new methods in the study of the ergodic properties of measures under the action of the direct sum of finite groups. We take the first steps in a systematic development of part of ergodic theory based on the formalism of the Riesz product construction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bowen, R.. Bernoulli equilibrium states for Axiom A diffeomorphisms. Math. Sys. Theory 8 (1974), 289294.CrossRefGoogle Scholar
[2]Brown, G.. Riesz products and generalized characters. Proc. London Math. Soc. 30 (1975), 209238.CrossRefGoogle Scholar
[3]Brown, G. & Dooley, A. H.. Ergodic measures are of weak product type. Math. Proc. Camb. Phil. Soc. 98 (1985), 129145.CrossRefGoogle Scholar
[4]Keane, M.. Strongly mixing g-measures. Invent. Math. 16 (1972), 309324.CrossRefGoogle Scholar
[5]Ledrappier, F.. Principe variationnel et systèmes dynamiques symboliques. Z. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), 185202.CrossRefGoogle Scholar
[6]Modica, L. & Mortola, S.. Singular measures and Riesz products. J. London Math. Soc. (2) 25 (1982), 115121.CrossRefGoogle Scholar
[7]Moran, W.. Ergodic measures for the irrational rotation of the circle. J. Austral. Math. Soc. 45 (1988), 133141.CrossRefGoogle Scholar
[8]Petit, B.. g-mesures et schémas de Bernoulli. Thèse de troisième cycle, Université de Rennes 1974.Google Scholar
[9]Schmidt, K.. Lectures on Ergodic Cocycles. McMillan: India, 1978.Google Scholar
[10]Schmidt, K. & Parthasarathy, K.. Factorisable representations of current groups and the Araki-Woods imbedding theorem. Acta Math. 128 (1972), 5371.Google Scholar
[11]Walters, P.. Ruelle's operator theorem and g-measures. Trans. Amer. Math. Soc. 214 (1975), 375387.Google Scholar