No CrossRef data available.
Published online by Cambridge University Press: 07 October 2019
Let $X$ be a finite-dimensional connected compact abelian group equipped with the normalized Haar measure $\unicode[STIX]{x1D707}$. We obtain the following mean ergodic theorem over ‘thin’ phase sets. Fix $k\geq 1$ and, for every $n\geq 1$, let $A_{n}$ be a subset of $\mathbb{Z}^{k}\cap [-n,n]^{k}$. Assume that $(A_{n})_{n\geq 1}$ has $\unicode[STIX]{x1D714}(1/n)$ density in the sense that $\lim _{n\rightarrow \infty }(|A_{n}|/n^{k-1})=\infty$. Let $T_{1},\ldots ,T_{k}$ be ergodic automorphisms of $X$. We have