Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T04:31:01.753Z Has data issue: false hasContentIssue false

Minimality for actions of abelian semigroups on compact spaces with a free interval

Published online by Cambridge University Press:  06 March 2018

MATÚŠ DIRBÁK
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia email [email protected], [email protected], [email protected], [email protected], [email protected]
ROMAN HRIC
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia email [email protected], [email protected], [email protected], [email protected], [email protected]
PETER MALIČKÝ
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia email [email protected], [email protected], [email protected], [email protected], [email protected]
L’UBOMÍR SNOHA
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia email [email protected], [email protected], [email protected], [email protected], [email protected]
VLADIMÍR ŠPITALSKÝ
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia email [email protected], [email protected], [email protected], [email protected], [email protected]

Abstract

We study minimality for continuous actions of abelian semigroups on compact Hausdorff spaces with a free interval. First, we give a necessary and sufficient condition for such a space to admit a minimal action of a given abelian semigroup. Further, for actions of abelian semigroups we provide a trichotomy for the topological structure of minimal sets intersecting a free interval.

Type
Original Article
Copyright
© Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beklaryan, L. A.. Groups of homeomorphisms of the line and the circle, topological characteristics and metric invariants. Russian Math. Surveys 59(4) (2004), 599660.Google Scholar
Dirbák, M., Snoha, L’. and Špitalský, V.. Minimality, transitivity, mixing and topological entropy on spaces with a free interval. Ergod. Th. & Dynam. Sys. 33(6) (2013), 17861812.10.1017/S0143385712000442Google Scholar
Fuchs, L.. Infinite Abelian Groups. Vol. I (Pure and Applied Mathematics, 36) . Academic Press, Burlington, MA, 1970.Google Scholar
Ghys, É.. Groups acting on the circle. Enseign. Math. 47(3/4) (2001), 329407.Google Scholar
Glasner, E.. Short proofs of theorems of Malyutin and Margulis. Proc. Amer. Math. Soc. 145(12) (2017), 54635467.Google Scholar
Kolyada, S., Snoha, L’. and Trofimchuk, S.. Noninvertible minimal maps. Fund. Math. 168(2) (2001), 141163.10.4064/fm168-2-5Google Scholar
Malyutin, A.. Classification of the group actions on the real line and circle. St. Petersburg Math. J. 19(2) (2008), 279296.10.1090/S1061-0022-08-00999-0Google Scholar
Margulis, G. A.. Free subgroups of the homeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I Math. 331(9) (2000), 669674.Google Scholar
Navas, A.. Groups of Circle Diffeomorphisms (Chicago Lectures in Mathematics) . University of Chicago Press, Chicago, 2011.Google Scholar
Shinohara, K.. On the minimality of semigroup actions on the interval which are C 1 -close to the identity. Proc. Lond. Math. Soc. (3) 109(5) (2014), 11751202.Google Scholar