Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T04:17:00.697Z Has data issue: false hasContentIssue false

Local dimension for piecewise monotonic maps on the interval

Published online by Cambridge University Press:  14 October 2010

Franz Hofbauer
Affiliation:
Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

Abstract

The local dimension of invariant and conformal measures for piecewise monotonic transformations on the interval is considered. For ergodic invariant measures m with positive characteristic exponent χm we show that the local dimension exists almost everywhere and equals hmm For certain conformal measures we show a relation between a pressure function and the Hausdorff dimension of sets, on which the local dimension is constant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] A. Blokh. The ‘spectral’ decomposition for one-dimensional maps. Dynamics Reported, (vol. 4) (Jones, C. K. R. T., Kirchgraber, V. and Walther, H. O., eds.) Springer Verlag, Berlin-Heidelberg-New York, 1995, pp. 159.CrossRefGoogle Scholar
[2] Cutler, C.. Connecting ergodicity and dimension in dynamical systems. Ergod. Th. & Dynam. Sys. 10 (1990), 451–62.CrossRefGoogle Scholar
[3] Cutler, C.. A review of the theory and estimation of fractal dimension. Nonlinear Time Series and Chaos, Vol. I: Dimension Estimation and Models. H. Tong, ed., World Scientific, Singapore, 1993.Google Scholar
[4] Denker, M., Grillenberger, C. and Sigmund, K.. Ergodic Theory on Compact Spaces. Springer Lecture Notes in Mathematics 527. Springer Verlag, Berlin-Heidelberg-New York, 1976.CrossRefGoogle Scholar
[5] Falconer, K. J.. Fractal geometryMathematical Foundations and Applications John Wiley, Chichester, 1990.CrossRefGoogle Scholar
[6] Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I. and Shraiman, B.. Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33 (1986), 11411151.CrossRefGoogle ScholarPubMed
[7] Hofbauer, F.. Piecewise invertible dynamical systems. Probab. Theory Relat. Fields 72 (1986), 359386.CrossRefGoogle Scholar
[8] Hofbauer, F.. Generic properties of invariant measures for continuous piecewise monotonic transformations, Monatsh. f. Math. 106 (1988), 301312.CrossRefGoogle Scholar
[9] Hofbauer, F. and Keller, G.. Equilibrium states for piecewise monotonic transformations. Ergod. Th. & Dynam. Sys.2 (1982), 2343.CrossRefGoogle Scholar
[10] Hofbauer, F. and Raith, P.. The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval. Canadian Math. Bull. 35 (1991), 115.Google Scholar
[11]Hofbauer, F. and Urbariski, M.. Fractal properties of invariant subsets for piecewise monotonic maps on the interval. Trans. Amer. Math. Soc. 343 (1994), 659673.CrossRefGoogle Scholar
[12]Horn, R. and Johnson, C.. Matrix Analysis. Cambridge University Press, Cambridge, 1985.CrossRefGoogle Scholar
[13]Parry, W.. Intrinsic Markov chains. Trans. Amer. Math. Soc. 112 (1964), 5566.CrossRefGoogle Scholar
[14]Raith, P.. Hausdorff dimension for piecewise monotonic maps. Studia Math. 94 (1989), 1733.CrossRefGoogle Scholar
[15]Rand, D.. The singularity spectrum f (a) for cookie-cutters. Ergod. Th. & Dynam. Sys. 9 (1989), 527–541.CrossRefGoogle Scholar
[16] Walters, P.. A variational principle for the pressure of continuous transformations. Amer. J. Math. 97 (1976), 931971.Google Scholar
[17]Walters, P.. An Introduction to Ergodic Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1982.CrossRefGoogle Scholar