Published online by Cambridge University Press: 07 September 2017
We consider the random $\unicode[STIX]{x1D6FD}$-transformation
$K_{\unicode[STIX]{x1D6FD}}$ introduced by Dajani and Kraaikamp [Random
$\unicode[STIX]{x1D6FD}$-expansions. Ergod. Th. & Dynam. Sys.23 (2003), 461–479], which is defined on
$\{0,1\}^{\mathbb{N}}\times [0,[\unicode[STIX]{x1D6FD}]/(\unicode[STIX]{x1D6FD}-1)]$. We give an explicit formula for the density function of a unique
$K_{\unicode[STIX]{x1D6FD}}$-invariant probability measure absolutely continuous with respect to the product measure
$m_{p}\otimes \unicode[STIX]{x1D706}_{\unicode[STIX]{x1D6FD}}$, where
$m_{p}$ is the
$(1-p,p)$-Bernoulli measure on
$\{0,1\}^{\mathbb{N}}$ and
$\unicode[STIX]{x1D706}_{\unicode[STIX]{x1D6FD}}$ is the normalized Lebesgue measure on
$[0,[\unicode[STIX]{x1D6FD}]/(\unicode[STIX]{x1D6FD}-1)]$. We apply the explicit formula for the density function to evaluate its upper and lower bounds and to investigate its continuity as a function of the two parameters
$p$ and
$\unicode[STIX]{x1D6FD}$.