Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T16:18:21.496Z Has data issue: false hasContentIssue false

Dynamics of hyperbolic correspondences

Published online by Cambridge University Press:  04 May 2021

CARLOS SIQUEIRA*
Affiliation:
Department of Mathematics, Federal University of Bahia, SalvadorCEP 40170115, Brazil

Abstract

This paper establishes the geometric rigidity of certain holomorphic correspondences in the family $(w-c)^q=z^p$ , whose post-critical set is finite in any bounded domain of $\mathbb {C}$ . In spite of being rigid on the sphere, such correspondences are J-stable by means of holomorphic motions when viewed as maps of $\mathbb {C}^2$ . The key idea is the association of a conformal iterated function system to the return branches near the critical point, giving a global description of the post-critical set and proving the hyperbolicity of these correspondences.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bousch, T.. Sur quelques problèmes de dynamique holomorphe. PhD Thesis, Université d’Orsay, 1992.Google Scholar
Bullett, S.. Critically finite correspondences and subgroups of the modular group. Proc. Lond. Math. Soc. (3) 65(2) (1992), 423448.10.1112/plms/s3-65.2.423CrossRefGoogle Scholar
Bullett, S. and Freiberger, M.. Holomorphic correspondences mating Chebyshev-like maps with Hecke groups. Ergod. Th. & Dynam. Sys. 25(4) (2005), 10571090.10.1017/S0143385704001026CrossRefGoogle Scholar
Bullett, S., Lomonaco, L. and Siqueira, C.. Correspondences in complex dynamics. New Trends in One-Dimensional Dynamics. Ed. Pacifico, M. J. and Guarino, P.. Springer, Cham, 2019, pp. 5175.10.1007/978-3-030-16833-9_5CrossRefGoogle Scholar
Bullett, S. and Penrose, C.. Mating quadratic maps with the modular group. Invent. Math. 115 (1994), 483511.10.1007/BF01231770CrossRefGoogle Scholar
Bullett, S. and Penrose, C.. Regular and limit sets for holomorphic correspondences. Fund. Math. 167 (2001), 111171.10.4064/fm167-2-2CrossRefGoogle Scholar
Douady, A. and Hubbard, J. H.. Étude dynamique des polynômes complexes. Partie I. Publ. Math. d’Orsay 84(2) (1984), 75.Google Scholar
Douady, A. and Hubbard, J. H.. Étude dynamique des polynômes complexes. Partie II (with the collaboration of P. Lavaurs, Tan Lei and P. Sentenac). Publ. Math. d’Orsay 85(4) (1985).Google Scholar
Dujardin, R. and Lyubich, M.. Stability and bifurcations for dissipative polynomial automorphisms of ${\mathbb{C}}^2$ . Invent. Math. 200(2) (2015), 439511.10.1007/s00222-014-0535-yCrossRefGoogle Scholar
Mané, R., Sad, P. and Sullivan, D.. On the dynamics of rational maps. Ann. Sci. Éc. Norm. Supér. 16(2) (1983), 193217.CrossRefGoogle Scholar
Münzner, H. F. and Rasch, H.-M.. Iterated algebraic functions and functional equations. Internat. J. Bifur. Chaos 1(4) (1991), 803822.CrossRefGoogle Scholar
Przytycki, F. and Urbanski, M.. Conformal Fractals: Ergodic Theory Methods, 1st edn. Cambridge University Press, New York, 2010.10.1017/CBO9781139193184CrossRefGoogle Scholar
Siqueira, C.. Dynamics of holomorphic correspondences. PhD Thesis, University of São Paulo, ICMC, Digital Library USP, 2015.Google Scholar
Siqueira, C. and Smania, D.. Holomorphic motions for unicritical correspondences. Nonlinearity 30(8) (2017), 3104.10.1088/1361-6544/aa7736CrossRefGoogle Scholar
Sumi, H.. On dynamics of hyperbolic rational semigroups. J. Math. Kyoto Univ. 37(4) (1998), 717733.Google Scholar
Urbański, M.. Geometric rigidity for class $\boldsymbol{\mathcal{S}}$ of transcendental meromorphic functions whose Julia sets are Jordan curves. Proc. Am. Math. Soc. 137(11) (2009), 37333739.CrossRefGoogle Scholar