Published online by Cambridge University Press: 01 June 2009
In 2004, Féjoz [Démonstration du ‘théoréme d’Arnold’ sur la stabilité du système planétaire (d’après M. Herman). Ergod. Th. & Dynam. Sys.24(5) (2004), 1521–1582], completing investigations of Herman’s [Démonstration d’un théoréme de V.I. Arnold. Séminaire de Systémes Dynamiques et manuscripts, 1998], gave a complete proof of ‘Arnold’s Theorem’ [V. I. Arnol’d. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspekhi Mat. Nauk. 18(6(114)) (1963), 91–192] on the planetary many-body problem, establishing, in particular, the existence of a positive measure set of smooth (C∞) Lagrangian invariant tori for the planetary many-body problem. Here, using Rüßmann’s 2001 KAM theory [H. Rüßmann. Invariant tori in non-degenerate nearly integrable Hamiltonian systems. R. & C. Dynamics2(6) (2001), 119–203], we prove the above result in the real-analytic class.