Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T16:39:26.853Z Has data issue: false hasContentIssue false

The transition to psychosis: risk factors and brain changes

Published online by Cambridge University Press:  11 October 2011

Stephen J. Wood*
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia Brain Research Institute, Melbourne, Australia
Murat Yücel
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia ORYGEN Research Centre, Department of Psychiatry, University of Melbourne, Australia
Alison R. Yung
Affiliation:
ORYGEN Research Centre, Department of Psychiatry, University of Melbourne, Australia
Gregor E. Berger
Affiliation:
ORYGEN Research Centre, Department of Psychiatry, University of Melbourne, Australia
Dennis Velakoulis
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
Christos Pantelis
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Australia
*
Address for correspondence: Dr. S. Wood, Melbourne Neuropsychiatry Centre, c/o National Neuroscience Facility, 161 Barry Street, Carlton South, VIC 3053 (Australia) Fax: +61-3-8345.0599 E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorials
Copyright
Copyright © Cambridge University Press 2004

References

REFERENCES

Andersen, S. L. (2003). Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience and Biobehavioural Reviews 27, 318.CrossRefGoogle ScholarPubMed
Bell, R. Q. (1992). Multiple-risk cohorts and segmenting risk as solutions to the problem of false positives in risk for the major psychoses. Psychiatry 55(4), 370381.CrossRefGoogle Scholar
Bilder, R.M., Goldman, R.S., Robinson, D., Reiter, G., Bell, L., Bates, J.A., Pappadopulos, E., Willson, D.F., Alvir, J.M., Woerner, M.G., Geisler, S., Kane, J.M., & Lieberman, J.A., (2000). Neuropsychology of firstepisode schizophrenia: Initial characterization and clinical correlates. American Journal of Psychiatry 157, 549559.CrossRefGoogle ScholarPubMed
Brewer, W.J., Wood, S.J., McGorry, P.D., Francey, S.M., Phillips, L.J., Yung, A.R., Anderson, V., Copolov, D., Singh, B., Velakoulis, D. & Pantelis, C. (2004). Impairment of olfactory identification ability in individuals at ultra high-risk for psychosis who later develop schizophrenia. American Journal of Psychiatry 160, 17901794.CrossRefGoogle Scholar
Brewer, W.J., Francey, S.M., Wood, S.J., Jackson, H.J., Pantelis, C., Phillips, L.J., Yung, A.R., Anderson, V. & McGorry, P.D., (in press). Memory impairments identified in people at ultra high-risk for psychosis who later develop first episode psychosis. American Journal of PsychiatryGoogle Scholar
Byrne, M., Hodges, A., Grant, E., Owens, D.G.C. & Johnstone, E.C., (1999). Neuropsychological assessment of young people at high genetic risk for developing schizophrenia compared with controls: preliminary findings of the Edinburgh High Risk Study (EHRS). Psychological Medicine 29, 11611173.CrossRefGoogle ScholarPubMed
Callicott, J.H., Egan, M., Bertolino, A., Mattay, V.S., Langheim, F.J.P., Frank, J.A., & Weinberger, D.R. (1998). Hippocampal N-acetyl aspartate in unaffected siblings of patients with schizophrenia: A possible intermediate neurobiological phenotype. Biological Psychiatry 44, 941950.CrossRefGoogle ScholarPubMed
Cannon, M., Caspi, A., Moffitt, T.E., Harrington, H., Taylor, A., Murray, R.M. & Poulton, R. (2002). Evidence for early-childhood, pandevelopmental impairment specific to schizophreniform disorder: Results from a longitudinal birth cohort. Archives of General Psychiatry 59, 449456.CrossRefGoogle Scholar
Cornblatt, B. & Keilp, J.G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin 20, 3146.CrossRefGoogle Scholar
De Luca, C. R., Wood, S.J., Anderson, V., Buchanan, J.-A., Proffitt, T., Mahony, K. & Pantelis, C. (2003). Normative data from the CANTAB. I: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology 25, 242254.CrossRefGoogle ScholarPubMed
Erlenmeyer-Kimling, L., Rock, D., Roberts, S.A., Janal, M., Kestenbaum, C., Cornblatt, B., Adamo, U.H., & Gottesman, I.I., (2000). Attention, memory, and motor skills as childhood predictors of schizophreniarelated psychoses: The New York high-risk project. American Journal of Psychiatry 157, 14161422.CrossRefGoogle ScholarPubMed
Hoff, A.L., Sakuma, M., Wieneke, M., Horon, R., Kushner, M. & DeLisi, L.E. (1999). Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia. American Journal of Psychiatry 156, 13361341.CrossRefGoogle ScholarPubMed
Hutton, S.B., Puri, B.K., Duncan, L.-J., Robbins, T.W., Barnes, T.R.E. & Joyce, E.M., (1998). Executive function in first-episode schizophrenia. Psychological Medicine 28, 463473.CrossRefGoogle ScholarPubMed
Keshavan, M.S., Dick, E.L., Mankowski, I., Harenski, K., Montrose, D.M., Diwadkar, V.A., & DeBellis, M. (2002). Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophrenia Research 58, 173183.CrossRefGoogle ScholarPubMed
Lawrie, S.M., Whalley, H., Abukmeil, S.S., Kestelman, J.N., Donnelly, L., Miller, P., Best, J.J.K., Cunningham Owens, D.G., & Johnstone, E.C., (2001). Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biological Psychiatry 49, 811823.CrossRefGoogle ScholarPubMed
Luna, B. & Sweeney, J.A., (2001). Studies of brain and cognitive maturation through childhood and adolescence: A strategy for testing neurodevelopmental hypotheses. Schizophrenia Bulletin 27(3), 443455.CrossRefGoogle ScholarPubMed
Manly, T., Anderson, V., Nimmo-Smith, I., Turner, A., Watson, P. & Robertson, I. (2001). The differential assessment of children's attention: The Test of Everyday Attention for Children (TEA-Ch). Normative sample and ADHD performance. Journal of Child Psychology and Psychiatry 42, 10651087.CrossRefGoogle ScholarPubMed
McKay, K., Halperin, J., Schwartz, S. & Sharma, V. (1994). Developmental analysis of three aspects of information processing: Sustained attention, selective attention and response organization. Development Neuropsychology 10, 121132.CrossRefGoogle Scholar
Miller, P.M., Lawrie, S.M., Byrne, M., Cosway, R. & Johnstone, E.C., (2002). Self-rated schizotypal cognitions, psychotic symptoms and the onset of schizophrenia in young people at high risk of schizophrenia. Acta Psychiatrica Scandanavica 105, 341345.CrossRefGoogle ScholarPubMed
Murray, R.M., & Lewis, S.W., (1987). Is schizophrenia a neurodevelopmental disorder? British Medical Journal 295, 681682.CrossRefGoogle ScholarPubMed
Nopoulos, P., Flashman, L.A., Flaum, M., Arndt, S. & Andreasen, N.C., (1994). Stability of cognitive functioning early in the course of schizophrenia. Schizophrenia Research 14, 2937.CrossRefGoogle Scholar
Pantelis, C., Barnes, T.R.E., Nelson, H.E., Tanner, S., Weatherley, L., Owen, A.M. & Robbins, T.W., (1997). Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120, 18231843.CrossRefGoogle ScholarPubMed
Pantelis, C., Yucel, M., Wood, S.J., McGorry, P.D., & Velakoulis, D. (2001). The timing and functional consequences of structural brain abnormalities in schizophrenia. NeuroScience News 4, 3646.Google Scholar
Pantelis, C., Velakoulis, D., McGorry, P.D., Wood, S.J., Suckling, J., Phillips, L.J., Yung, A.R., Bullmore, E.T., Brewer, W.J., Soulsby, B., Desmond, P. & McGuire, P.K., (2003a). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI study. Lancet 361, 281288.CrossRefGoogle Scholar
Pantelis, C., Yucel, M., Wood, S.J., McGorry, P.D., & Velakoulis, D. (2003b). Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Australian and New Zealand Journal of Psychiatry 37, 399406.CrossRefGoogle Scholar
Park, S. & Holzman, P.S., (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry 49, 975982.CrossRefGoogle ScholarPubMed
Phillips, L.J., Velakoulis, D., Pantelis, C., Wood, S.J., Yuen, H.P., Yung, A.R., Desmond, P., Brewer, W.J., & McGorry, P.D., (2002). Nonreduction in hippocampal volume is associated with risk for psychosis. Schizophrenia Research 58, 145158.CrossRefGoogle Scholar
Rebok, G., Smith, C., Pascualvaca, D., Mirsky, A., Anthony, B. & Kellam, S. (1997). Developmental changes in attentional performance in urban children from eight to thirteen years. Child Neuropsychology 3, 4760.CrossRefGoogle Scholar
Rund, B.R., (1998). A review of longitudinal studies of cognitive functions in schizophrenia patients. Schizophrenia Bulletin 24(3), 425435.CrossRefGoogle ScholarPubMed
Saykin, A.J., Shtasel, D.L., Gur, R.E., Kester, D.B., Mozley, L.H., Stafmiak, P. & Gur, R.C., (1994). Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Archives of General Psychiatry 51, 124131.CrossRefGoogle ScholarPubMed
Spear, L.P., (2000). The adolescent brain and age-related behavioural manifestation. Neuroscience and Biobehavioural Reviews 24, 417463.CrossRefGoogle Scholar
Weinberger, D.R., (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weinberger, D.R., Berman, K.F., & Zee, R.F., (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia I. Regional cerebral blood flow evidence. Archives of General Psychiatry 43, 114124.CrossRefGoogle ScholarPubMed
Whalley, H., Simonotto, E., Flett, S., Marshall, I., Ebmeier, K.P., Owens, D.G.C., Goddard, N.H., Johnstone, E.C., & Lawrie, S.M., (2004). fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain 127, 478490.CrossRefGoogle Scholar
Wood, S.J., & Pantelis, C. (2001). Does a neurodevelopmental lesion involving the hippocampus explain memory dysfunction in schizophrenia? Zeitschrift für Neuropsychologie 12(1), 6167.CrossRefGoogle Scholar
Wood, S.J., Berger, G.E., Velakoulis, D., Phillips, L.J., McGorry, P.D., Yung, A.R., Desmond, P. & Pantelis, C. (2003a). Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophrenia Bulletin 29, 831844.CrossRefGoogle Scholar
Wood, S.J., Pantelis, C., Proffitt, T., Phillips, L.J., Stuart, G.W., Buchanan, J.-A., Mahony, K., Brewer, W.J., Smith, D. & McGorry, P.D., (2003b). Spatial working memory ability is a marker of risk-for-psychosis. Psychological Medicine 33, 12391247.CrossRefGoogle ScholarPubMed
Yücel, M., Stuart, G.W., Maruff, P., Wood, S.J., Savage, G., Smith, D., Crowe, S.F., Copolov, D., Velakoulis, D. & Pantelis, C. (2002). Paracingulate morphologic differences in males with established schizophrenia: A magnetic resonance imaging morphometric study. Biological Psychiatry 52, 1523.CrossRefGoogle Scholar
Yücel, M., Wood, S.J., Phillips, L.J., Stuart, G.W., Smith, D., Yung, A.R., Velakoulis, D., McGorry, P.D., & Pantelis, C. (2003). Morphological anomalies of the anterior cingulate cortex in young individuals at ultra high-risk of developing a psychotic illness. British Journal of Psychiatry 182, 518524.CrossRefGoogle ScholarPubMed
Yung, A.R., McGorry, P.D., McFarlane, C.A., Jackson, H.J., Patton, G.C., & Rakkar, A. (1996). Monitoring and care of young people at incipient risk of psychosis. Schizophrenia Bulletin 22, 283303.CrossRefGoogle ScholarPubMed
Yung, A.R., Phillips, L.J., Yuen, H.P., Francey, S., McFarlane, C.A., Hallgren, M.A., & McGorry, P.D., (2003). Psychosis prediction: 12 month follow-up of a high risk ('prodromal') group. Schizophrenia Research 60(1), 2132.CrossRefGoogle ScholarPubMed