Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T02:35:03.722Z Has data issue: false hasContentIssue false

Prenatal determinants of schizophrenia: what we have learned thus far?

Published online by Cambridge University Press:  11 October 2011

Michaeline Bresnahan*
Affiliation:
New York State Psychiatric Institute and Mailman School of Public Health of Columbia University, New York, NY, (USA)
Catherine A. Schaefer
Affiliation:
Kaiser Pennanente Division of Research, Oakland, CA, (USA)
Alan S. Brown
Affiliation:
College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute and Mailman School of Public Health of Columbia University, New York, NY, (USA)
Ezra S. Susser
Affiliation:
College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute and Mailman School of Public Health of Columbia University, New York, NY, (USA)
*
Address for correspondence: Dr. M. Bresnahan, Department of Epidemiology, Mailman School of Public Health, 722 W. 168th St., New York, NY 10032(USA). Fax: +1-212-342.5168 E-mail: [email protected].

Summary

The Prenatal Determinants of Schizophrenia (PDS) study was designed to examine early antecedents to schizophrenia. Based in the Child Health and Development Study cohort assembled in 1959-1967, over 12,000 cohort members were followed in the PDS study for psychiatric disorders. Using the extensive data and biological samples prospectively collected beginning during pregnancy, PDS investigators have examined the influence of prenatal exposures on risk of schizophrenia in adulthood. Here we describe a few key findings from the PDS with respect to prenatal infection, nutrition, and toxic exposures.

Declaration of Interest: Supported by the Lieber Center for Schizophrenia Research, and the following grants: NIMH 1R01MH 63264-01A1 (A.S.B.), NIMH 1R01MH-60249 (A.S.B.), 1R01MH-60249-03S2 (A.S.B.), 1K02MH65422-01 (A.S.B.), aNARSAD Independent Investigator Award (A.S.B.).

Type
Special Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, A.S., Begg, M.D., Gravenstein, S., Schaefer, C, Wyatt, R.J., Bresnahan, M., Babulas, V. & Susser, E. (2004a). Serologic evidence for prenatal influenza in the etiology of schizophrenia. Archives of General Psychiatry 61, 774780.CrossRefGoogle ScholarPubMed
Brown, A.S., Hooton, J., Schaefer, C.A., Zhang, H., Petkova, E., Babulas, V., Perrin, M., Gorman, J.M. & Susser, E.S. (2004b). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. American Journal of Psychiatry 161, 889895.CrossRefGoogle ScholarPubMed
Brown, A.S., Schaefer, C.A., Quesenberry, C.P., Liu, L., Babulas, V.P. & Susser, E.S. (2005). Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. American Journal of Psxchiatrx 162, 767773.CrossRefGoogle ScholarPubMed
Cannon, M., Jones, P.B. & Murray, R.M. (2002). Obstetric complications and schizophrenia: historical and meta-analytic review. American Journal of Psychiatry 159, 10801092.CrossRefGoogle ScholarPubMed
de la Calle, M., Usandizaga, R., Sancha, M., Magdaleno, F., Herranz, A. & Cabrillo, E. (2003). Homocysteine. folic acid and B-group vitamins in obstetrics and gynaecology. European Journal of Obstetrics Gxnecologx and Reproductive Biology 107, 125134.CrossRefGoogle ScholarPubMed
Cashore, W.J. (1990). The neurotoxicity of bilirubin. Clinical Perinatology 17, 437447.CrossRefGoogle ScholarPubMed
Hollister, J.M., Laing, P. & Mednick, S.A. (1996). Rhesus incompatibility as a risk factor for schizophrenia in male adults. Archives of General Psychiatry 53, 1924.CrossRefGoogle ScholarPubMed
Insel, B.J., Brown, A.S., Bresnahan, M.A., Schaefer, CA. & Susser, E.S. (in press). Maternal - Fetal blood incompatibility and the risk of schizophrenia in offspring. Schizophrenia Research.Google Scholar
Kristensen, J., Vestergaard, M., Wisborg, K., Kesmodel, U. & Secher, N.J. (2005). Pre-pregnancy weight and the risk of stillbirth and neonatal death. British Journal of Obstetrics and Gynecologv 112, 403408.CrossRefGoogle ScholarPubMed
Lipton, S.A., Kim, W.K., Choi, Y.B., Kumar, S., D'Emilia, D.M., Rayudu, P.V., Arnelle, D.R. & Stamler, J.S. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Science USA. 94, 59235928.CrossRefGoogle ScholarPubMed
Mollison, P.L., Engelfriet, C.P. & Contreras, M. (1993). Haemolytic dis-ease of the fetus and the newborn, In Blood Transfusion in Clinical Medicine, 9th ed.. pp. 543–91. Blackweil Scientific: Oxford.Google Scholar
Mortensen, P.B., Yolken, R.H., Lindum, B., Sorensen, T., Hougaard, D. & Petersen, B.N. (2005). Abstract: Toxoplasmosis and other early infections in relation to schizophrenia risk. Schizophrenia Bulletin 31, 232233.Google Scholar
Murray, R.M. & Lewis, S.W. (1987). Is schizophrenia a neurodevelop-mental disorder? British Medical Journal 295, 681682.CrossRefGoogle Scholar
Opler, M.G., Brown, A.S., Graziano, J., Desai, M., Zheng, W., Schaefer, C, Factor-Litvak, P. & Susser, E.S. (2004). Prenatal lead exposure, delta-aminolevulini acid, and schizophrenia. Environmental Health Perspectives 112, 548552.CrossRefGoogle Scholar
Schaefer, C, Brown, A.S., Wyatt, R.J., Kline, J., Begg, M., Bresnahan, M. & Susser, E. (2000). Maternal prepregnant body mass and risk of schizophrenia in adult offspring. Schizophrenia Bulletin 26, 275295.CrossRefGoogle ScholarPubMed
Shaw, G.M., Todoroff, K., Schaffer, D.M. & Selvin, S. (2000). Maternal height and prepregnancy body mass index as risk factors for selected congenital anomalies. Paediatric and Perinatal Epidemiology 14, 234249.CrossRefGoogle ScholarPubMed
Smith, G.D. & Ebrahim, S. (2003). Mendelian randomization: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology 32, 122.CrossRefGoogle ScholarPubMed
Susser, E.S. & Lin, S.P. (1992). Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Archives of General Psychiatry 49, 983988.CrossRefGoogle Scholar
Susser, E.S., Schaefer, C.A., Brown, A.S., Begg, M.D. & Wyatt, R.J. (2000). The design of the prenatal determinants of schizophrenia study. Schizophrenia Bulletin 26, 257273.CrossRefGoogle ScholarPubMed
Watkins, M.L., Rasmussen, S.A., Honein, M.A., Botto, L.D. & Moore, C.A. (2003). Maternal obesity and risk for birth defects. Pediatrics 111, 11521158.CrossRefGoogle ScholarPubMed
Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.CrossRefGoogle ScholarPubMed
Weiss, J.L., Malone, F.D., Emig, D., Ball, R.H., Nyberg, D.A., Comstock, C.H., Saade, G., Eddleman, K., Carter, S.M., Craigo, S.D., Carr, S.R., D'Alton, M.E. & FASTER Research Consortium (2004). Obesity, obstetric complications and cesarean delivery rate--a population-based screening study. American Journal of Obstetrics and Gynecology 190, 10911097.CrossRefGoogle ScholarPubMed