Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T22:02:29.915Z Has data issue: false hasContentIssue false

Trimethoprim resistance in commensal bacteria isolated from farm animals

Published online by Cambridge University Press:  19 October 2009

S. G. B. Amyes
Affiliation:
Department of Bacteriology, The Medical School, University of Edinburgh, Teviot Place, Edinburgh EHS 9AG, United Kingdom
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Trimethoprim resistance was examined in faecal bacteria obtained from chickens, sheep, cattle and pigs. The incidence of trimethoprim resistance in porcine strains was 17% (157/922) and, whereas 15·8% (146/922) of these bacteria were highly resistant, only 4% (37/922) of the isolates possessed trimethoprim resistance plasmids. Highly resistant porcine strains were obtained from 44% of the pig farms (41/93) but transferable trimethoprim resistance was found in isolates from 11% (10/93) of the farms. There was an association between the carriage of trimethoprim resistance plasmids and certain farms. Most of the resistance plasmids were not identical with those found in human clinical bacteria but one porcine plasmid was the same as the most ubiquitous trimethoprim resistance plasmid in Edinburgh.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

REFERENCES

Acar, J. F., Goldstein, F. W., Gerbaud, G. R. & Chabbert, Y. A. (1977). Plasmides de résistance au triméthoprim: transférabilite et groupes d'incompatibilité. Annales de Microbiologie de l'Institut Pasteur 128 A, 4147.Google Scholar
Amyes, S. G. B., Doherty, C. J. & Young, H.-K. (1986). High level trimethoprim resistance in urinary bacteria. European Journal oj Clinical Microbiology 5, 287291.CrossRefGoogle ScholarPubMed
Amyes, S. G. B., Emmerson, A. M. & Smith, J. T. (1978). R-faetor mediated trimethoprim resistance: The result of two three-month clinical surveys. Journal of Clinical Pathology 31, 850854.CrossRefGoogle ScholarPubMed
Amyes, S. G. B. & Gould, I. M. (1984). Trimethoprim resistance plasmids in faecal bacteria. Annales de Microbiologie de l'Institut Pasteur 135 B, 177186.CrossRefGoogle Scholar
Amyes, S. G. B., McMillan, C. J. & Drysdale, J. L. (1981). Transferable trimethoprim resistance amongst hospital isolates. In New Trends in Antibiotics: Research and Therapy (ed. Grassi, G. G. and Sabath, L. D.), pp. 325327. Amsterdam: Elsevier/North Holland Biomedical Press.Google Scholar
Anderson, E. S., Humphreys, G. O. & Willshaw, G. A. (1975). The molecular relatedness of R factors in Enterobacteria of human and animal origin. Journal of General Microbiology 91, 376382.CrossRefGoogle ScholarPubMed
Anderson, E. S., Pitton, J.-S. & Mayhew, J. N. (1968). Restriction of bacteriophage multiplication by resistance determinants in Salmonellae. Nature 219, 640641.CrossRefGoogle ScholarPubMed
Anderson, E. S. & Threlfall, E. J. (1974). The characterization of plasmids in the entero bacteria. Journal of Hygiene, 72, 471487.CrossRefGoogle Scholar
Bachmann, B. J. (1972). Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriological Reviews 36, 525555.CrossRefGoogle ScholarPubMed
Bezanson, G. S., Pauze, M. & Lior, H. (1981). Antibiotic resistance and R plasmids in food chain Salmonella: evidence of plasmid relatedness. Applied and Environmental Microbiology 41, 585592.CrossRefGoogle Scholar
Birnboim, H. C. & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7, 15131523.CrossRefGoogle ScholarPubMed
Fleming, M. P. (1973). Trimethoprim resistance and its transferability in Escherichia coli isolated from calves treated with trimethoprim-sulphadiazine: a two year study. Journal of Hygiene 71, 669677.Google ScholarPubMed
Fleming, M. P., Datta, N. & Grüneberg, R. (1972). Trimethoprim resistance determined by R-factors. British Medical Journal i, 726728.CrossRefGoogle Scholar
Hales, B. A. & Amyes, S. G. B. (1986). Acquisition of a gene encoding mannose-resistant haemagglutinating fimbriae by a resistance plasmid during long-term urinary infection. Journal of Medical Microbiology 22, 295299.CrossRefGoogle ScholarPubMed
Linton, A. H., Handley, B., Osborne, A. D., Shaw, B. G., Roberts, T. A. & Hudson, W. R. (1976). Contamination of pig carcasses at two abattoirs by Escherichia coli with special reference to O-serotypes and antibiotic resistance. Journal of Applied Bacteriology 42, 89110.CrossRefGoogle Scholar
Mee, B. J. & Nikoletti, S. M. (1983). Plasmids encoding trimethoprim resistance in bacterial isolates from man and pigs. Journal of Applied Bacteriology 54, 225235.CrossRefGoogle ScholarPubMed
Richards, H., Datta, N., Wray, C. & Sojka, W. J. (1978). Trimethoprim resistance plasmids and transposons in Salmonella. Lancet ii, 11941195.CrossRefGoogle Scholar
Romero, E. & Peuducca, M. (1977). Compatibility groups of R-factors for trimethoprim resistance isolated in Italy. Journal of Antimicrobial Chemotherapy 3 (Suppl. C), 3538.CrossRefGoogle ScholarPubMed
Smith, H. W. (1980). Antibiotic-resistant Escherichia coli in market pigs in 1956–1979: the emergence of organisms with plasmid-borne trimethoprim resistance. Journal of Hygiene 84, 467477.CrossRefGoogle Scholar
Smith, J. T. (1969). R-factor gene expression in Gram-negative bacteria. Journal of General Microbiology 55, 109120.CrossRefGoogle ScholarPubMed
Takahashi, S. & Nagano, Y. (1984). Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. Journal of Clinical Microbiology 20, 608613.CrossRefGoogle ScholarPubMed
Threlfall, E. L., Frost, J. A., Kino, H. C. & Rowe, B. (1983). Plasmid-encoded trimethoprim resistance in salmonellas isolated in Britain between 1970 and 1981. Journal of Hygiene 90, 5560.CrossRefGoogle ScholarPubMed
Towner, K. J., Pearson, N. J., Pinn, P. A. & O'Grady, F. (1980). Increasing importance of plasmid-mediated trimethoprim resistance in enterobacteria: two six-month surveys. British Medical Journal 280, 517519.CrossRefGoogle ScholarPubMed
Towner, K. J., Smith, M. A. & Cowlishaw, W. A. (1983). Isolation of trimethoprim-resistant, sulphonamide-sensitive Enterobacteriaceae from urinary tract infection. Antimicrobial Agents and Chemotherapy 23, 617618.CrossRefGoogle Scholar
Ward, L. R., Rowe, B. & Threlfall, E. J. (1982). Incidence of trimethoprim resistance in Salmonellae isolated in Britain: a twelve year study. Lancet ii, 705706.CrossRefGoogle Scholar
West, B. & White, G. (1979). A survey of trimethoprim resistance in the enteric bacterial flora of farm animals. Journal of Hygiene 82, 481488.CrossRefGoogle ScholarPubMed
Wise, P. J., Towner, K. J., Webster, C. A., Slack, R. C. B. & Jones, T. O. (1985). Trimethoprim resistance plasmids in Escherichia coli isolated from cases of diarrhoea in cattle, pigs and sheep. Journal of Applied Bacteriology 58, 555561.CrossRefGoogle ScholarPubMed
Young, H. K. & Amyes, S. G. B. (1983). Trimethoprim resistance: An epidemic caused by two related transposons. In Proceedings of the 13th International Congress of Chemotherapy (ed. Spitzy, K. H. and Karrer, K.), Part 87, pp. 9396. Vienna: Verlag Egermann.Google Scholar
Young, H.-K., Jesudason, M. V., Koshi, G. & Amyes, S. G. B. (1986). Trimethoprim resistance amongst urinary bacteria in South India. Journal of Antimicrobial Chemotherapy 17, 615621.CrossRefGoogle ScholarPubMed