Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:42:11.171Z Has data issue: false hasContentIssue false

Serological comparison and haemagglutinating activity of Mycoplasma dispar

Published online by Cambridge University Press:  15 May 2009

C. J. Howard
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berks. RG16 0NN
R. N. Gourlay
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berks. RG16 0NN
Jacqueline Collins
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berks. RG16 0NN
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of twelve strains of Mycoplasma dispar by the metabolism inhibition and indirect haemagglutination tests has shown them to form a serologically homogeneous group of micro-organisms. The twelve strains vary in their haemagglutinating activity against erythrocytes from different animal species, and certain of the strains can be distinguished by the erythrocytes they agglutinate. Haemagglutination may thus provide a method by which certain strains can be typed. The erythrocyte receptor site does not appear to contain sialic acid and is not sensitive to proteolytic enzymes. On the mycoplasma cell two attachment sites have been demonstrated. One, by which it attaches to sheep and bovine erythrocytes, is a protein or contains a protein moiety. The chemical nature of the other attachment site, by which M. dispar attaches to rabbit erythrocytes, is unknown.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Andrews, B. E., Leach, R. H., Gourlay, R. N. & Howard, C. J. (1973). Enhanced isolation of Mycoplasma dispar by substitution of ampicillin for benzyl penicillin in growth media. Veterinary Record 93, 603.CrossRefGoogle ScholarPubMed
Buckland, F. E. & Tyrrell, D. A. J. (1963). A comparative study of virus haemagglutinins. The stability of haemagglutinins and red cell receptors to certain physical and chemical treatments. Journal of General Microbiology 32, 241–53.CrossRefGoogle ScholarPubMed
Erno, H. & Stipkovits, L. (1973). Bovine mycoplasmas: cultural and biochemical studies, II. Acta Veterinaria Scandinavica 14, 450–63.CrossRefGoogle ScholarPubMed
Forshaw, K. A. & Fallon, R. J. (1972). Serological heterogeneity of Mycoplasma pulmonis. Journal of General Microbiology 72, 501–10.CrossRefGoogle ScholarPubMed
Gesner, B. & Thomas, L. (1966). Sialic acid binding sites: role in haemagglutination by Mycoplasma gallisepticum. Science, New York 151, 590–1.CrossRefGoogle ScholarPubMed
Gourlay, R. N. (1969). Isolation of a Mycoplasma-like organism from pneumonic calf lungs. Veterinary Record 84, 229.CrossRefGoogle ScholarPubMed
Gourlay, R. N. & Leach, R. H. (1970). A new myoplasma species isolated from pneumonic lungs of calves (Mycoplasma dispar sp. nov.) Journal of Medical Microbiology 3, 111–23.CrossRefGoogle Scholar
Gourlay, R. N., Mackenzie, A. & Cooper, J. E. (1970). Studies of the microbiology and pathology of pneumonic lungs of calves. Journal of Comparative Pathology 80, 575–84.CrossRefGoogle ScholarPubMed
Gourlay, R. N. & Thomas, L. H. (1969). Experimental pneumonia in calves produced by inoculation of mycoplasmas. Veterinary Record 85, 583.CrossRefGoogle ScholarPubMed
Herbert, W. J. (1967). Passive haemagglutination. In Handbook of Experimental Immunology(ed. Wier, D. M.), pp. 720–44. Oxford and Edinburgh: Blackwell Scientific Publications.Google Scholar
Hollingdale, M. R. & Manchee, R. J. (1972). The role of mycoplasma membrane proteins in the adsorption of animal cells to Mycoplasma hominis colonies. Journal of General Microbiology 70, 391–3.CrossRefGoogle ScholarPubMed
Howard, C. J. & Gourlay, R. N. (1972). Serology of bovine T-mycoplasmas. British Veterinary Journal 128, xxxvii–xl.Google ScholarPubMed
Howard, C. J. & Gourlay, R. N. (1973). Inhibition by normal rabbit sera of the growth of T-mycoplasma strains isolated from different animal species. Journal of General Microbiology 78, 277–85.CrossRefGoogle ScholarPubMed
Howard, C. J. & Gourlay, R. N. (1974). An electron-microscopic examination of certain bovine mycoplasmas stained with ruthenium red and the demonstration of a capsule on Mycoplasma dispar. Journal of General Microbiology. In the press.CrossRefGoogle ScholarPubMed
Manchee, R. J. & Taylor-Robinson, D. (1968). Haemadsorption and haemagglutination by mycoplasmas. Journal of General Microbiology 50, 465–78.CrossRefGoogle ScholarPubMed
Manchee, R. J. & Taylor-Robinson, D. (1969 a). Studies on the nature of receptors involved in attachment of tissue culture cells to mycoplasmas. British Journal of Experimental Pathology 50, 6675.Google ScholarPubMed
Manchee, R. J. & Taylor-Robinson, D. (1969 b). Utilization of neuraminic acid receptors by mycoplasmas. Journal of Bacteriology 98, 914–19.CrossRefGoogle ScholarPubMed
Purcell, R. H., Chanock, R. M. & Taylor-Robinson, D. (1969). Serology of the mycoplasmas of man. In The Mycoplasmatales and the L-phase of Bacteria(ed. Hayflick, L.), pp. 221–64. Amsterdam: North-Holland Publishing Company.Google Scholar
Purcell, R. H., Wong, D. G., Chanock, R. M., Taylor-Robinson, D., Canchola, J. & Valdesuso, J. (1967). Significance of antibody to mycoplasma as measured by metabolic-inhibition techniques. Annals of the New York Academy of Sciences 143, 664–75.CrossRefGoogle ScholarPubMed
StGeorge, T. D. George, T. D., Horsfall, N. & Sullivan, N. D. (1973). A subclinical pneumonia of calves associated with Mycoplasma dispar. Australian Veterinary Journal 49, 580–86.Google Scholar
Savage, D. C. (1972). Survival on mucosal epithelia, epithelial penetration and growth in tissues of pathogenic bacteria. Symposium of the Society for General Microbiology 22, 2557.Google Scholar
Sobeslavsky, O., Prescott, B. & Chanock, R. M. (1968). Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. Journal of Bacteriology 96, 695705.CrossRefGoogle ScholarPubMed
Spector, W. S. (1956). Handbook of biological data. Philadelphia and London: W. B. Saunders.Google Scholar
Springer, E. L. & Roth, I. L. (1973). The ultrastructure of the capsules of Diplococcus pneumoniae and Klebsiella pneumoniae stained with ruthenium red. Journal of General Microbiology 74, 2131.CrossRefGoogle ScholarPubMed
Subcommittee on the Taxonomy of Mycoplasmatales (1972). Proposal for minimal standards for descriptions of new species of the order Mycoplasmatales. International Journal of Systematic Bacteriology 22, 184–8.CrossRefGoogle Scholar
Taylor-Robinson, D. & Berry, D. M. (1969). The evaluation of the metabolic-inhibition technique for the study of Mycoplasma gallisepticum. Journal of General Microbiology 55, 127–37.CrossRefGoogle Scholar
Taylor-Robinson, D., Purcell, R. H., Wong, D. C. & Chanock, R. M. (1966). A colour test for the measurement of antibody to certain mycoplasma species based upon the inhibition of acid production. Journal of Hygiene 64, 91104.CrossRefGoogle ScholarPubMed
Thomas, L. H. & Howard, C. J. (1974). The effect of Mycoplasma dispar, Mycoplasma bovirhinis, Acholeplasma laidlawii and T-mycoplasmas on organ cultures of bovine trachea. Journal of Comparative Pathology 84, 193201.CrossRefGoogle ScholarPubMed
Thomas, L. H. & Smith, G. S. (1972). Distribution of mycoplasmas in the non-pneumonic bovine respiratory tract. Journal of Comparative Pathology 82, 14.CrossRefGoogle ScholarPubMed
Bettelheim, K. A. & Taylor, J. (1969). A study of Escherichia coli isolated from chronic urinary infection. Journal of Medical Microbiology 2, 225–36.CrossRefGoogle ScholarPubMed
Cooke, E. M., Ewins, S. P. & Shooter, R. A. (1969). Changing faecal population of Escherichia coli in hospital medical patients. British Medical Journal iv, 593–5.CrossRefGoogle Scholar
Cooke, E. M., Hettiaratchy, I. G. T. & Buck, A. C. (1971). Fate of ingested Escherichia coli in normal persons. Journal of Medical Microbiology 5, 361–9.CrossRefGoogle Scholar
Cooke, E. M., Shooter, R. A., Kumar, P. J., Rousseau, S. A. & Foulkes, A. L. (1970). Hospital food as a possible source of Escherichia coli in patients. Lancet i, 436–7.CrossRefGoogle Scholar
Gruneberg, R. N. & Bettelheim, K. A. (1969). Geographical variation in serological types of urinary Escherichia coli. Journal of Medical Microbiology 2, 219–24.CrossRefGoogle ScholarPubMed
Gruneberg, R. N., Leigh, D. A. & Brumfitt, W. (1968). Escherichia coli serotypes in urinary tract infection: studies in domiciliary, ante-natal and hospital practice. In Urinary Tract Infection(ed. O'Grady, F. W. & Brumfitt, W.), pp. 6879. London: Oxford University Press.Google Scholar
Shooter, R. A., Cooke, E. M., Rouseau, S. A. & Breadon, A. L. (1970). Animal sources of common serotypes of Escherichia coli in the food of hospital patients; possible significance in urinary tract infections. Lancet ii, 226–8.CrossRefGoogle Scholar
Shooter, R. A., Faiers, M. C., Cooke, E. M., Breaden, A. L. & O'Farrell, S. M. (1971). Isolation of Escherichia coli, Pseudomonas aeruginosa and Klebsiella from food in hospitals, canteens and schools. Lancet ii, 390–2.CrossRefGoogle Scholar
Williams Smith, H. (1969). Transfer of antibiotic resistance from animal and human strains of Escherichia coli to resident E. coli in the alimentary tract of man. Lancet i, 1174–6.CrossRefGoogle Scholar