Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T00:05:17.117Z Has data issue: false hasContentIssue false

Refection1, a Transmissible Change in the Intestinal Content, enabling Rats to grow and thrive without Vitamin B in the Food

Published online by Cambridge University Press:  15 May 2009

L. S. Fridericia
Affiliation:
From the University Institute of Hygiene, Copenhagen, Denmark.
P. Freudenthal
Affiliation:
From the University Institute of Hygiene, Copenhagen, Denmark.
S. Gudjonnsson
Affiliation:
From the University Institute of Hygiene, Copenhagen, Denmark.
G. Johansen
Affiliation:
From the University Institute of Hygiene, Copenhagen, Denmark.
N. Schoubye
Affiliation:
From the University Institute of Hygiene, Copenhagen, Denmark.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. When refected rats are fed on adequate diet, containing vitamin B in the form of yeast, the defect in their starch-digestion disappears, and their faeces become normal.

2. Attempts to cause refection in rats receiving an adequate diet by feeding white faeces from refected rats do not influence the starch digestion of the former.

3. When refected rats, growing normally, are fed upon a diet devoid of starch (as well as of vitamin B) their body weight decreases rapidly, but in spite of this decrease they live for a considerable time.

4. Refection cannot be induced in young rats fed upon a diet devoid of starch and of vitamin B.

5. Rats may become or may remain refected when the starch of their 1. diet is replaced by dextrin containing a small amount of starch. The faeces of these rats do not seem able to refect other rats.

6. Rats may be refected without producing white faeces, but starch grains have always been present in the faeces of such rats.

7. The results of special experiments and the clinical observation of refected rats suggest an essential connection between the ability to grow and thrive without vitamin B and the defective digestion of starch.

8. Attempts at refection have no beneficial influence upon rats suffering from a deficiency of vitamin A.

9. Refection has been transmitted to albino mice receiving a diet devoid of vitamin B, but the refection lasted only for a short time. Attempts at refection of rice-fed pigeons have not succeeded.

10.The bearing of studies in refection upon several problems connected with vitamin B is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1927

References

REFERENCES

Cramer, W., Drew, A. H. and Mottram, J. C. (1921). On the function of the lymphocyte and of lymphoid tissue in nutrition. Lancet, ii, 1202.Google Scholar
Drummond, J. C. (1918). A study of the water-soluble accessory growth promoting substance. II. Its influence upon the nutrition and nitrogen metabolism of the rat. Biochem. Journ. 12, 2540.CrossRefGoogle ScholarPubMed
Fridericia, L. S. (1926). Refection, a transmissible change in the intestinal content, enabling rats to grow and thrive without B-vitamin in the food. Skandinavisch. Arch, f. Physiol. 2. Abstracts of communications to the Twelfth Internat. Physiol. Congress, p. 55.Google Scholar
Hulshoff, Pol D. J. (1912). lets over de aetiologie van Polyneuritis gallinarum, in verband met verzuurde-rijstvoeding. Geneesk. Tijdschr. v. Nederlandsch-Indië, 52, afl. 1, pp. 1118.Google Scholar
Mccoixum, E. V. and Davis, Marguerite (1915). The essential factors in the diet during growth. J. Biol. Ghem. 23, 231246.Google Scholar
Adler, A. and Schubert, E. (1923). Ueber Urobilinbestimmung in den Faezes. Biochem. Zeitschr. 134, 533540.Google Scholar
Andersen, A. C. and Norman-Jensen, B. (1923). Om Kvaelstofbestemmelser. Den hgl. Veterinaer- og Landbohoejskoles Laboratorium for landoekonomiske Forsoeg. 113, 4683.Google Scholar
Bickel, A. (1922). Experimentelle Untersuchungen ueber den Einfluss der Vitamine auf Verdauung und Stoffwechsel und die Theorie der Vitaminwirkung. Klin. Wochenschr. 1 Jahrg. pp. 110112.CrossRefGoogle Scholar
Braddon, W. L. and Cooper, E. A. (1914). The influence of metabolic factors in Beri-Beri. I. The effect of increasing the carbohydrate ration on the development of polyneuritis in birds fed on polished rice. J. Hygiene, 14, 331353.CrossRefGoogle ScholarPubMed
Brulé, M. (1920). Récherches recentes sur les ictères, p. 51.Google Scholar
Elman, R. and Mcmaster, Ph.D. (1925). Studies on urobilin physiology and pathology. I. The quantitative determination of urobilin. J. Exper. Med. 41, 503512.Google Scholar
Fraenckel, S. and Hamburg, M. (1906). Ueber Diastase. I. Versuche zur Herstellung von Reindiastase und deren Eigenschaften. Beitr. z. chem. Physiol. u. Pathol. 8, 389.Google Scholar
Funk, C. (1924). Die Vitamine (3rd ed. p. 92).Google Scholar
Gade, H. V. (1919). Bidrag til Kendskabet om Resorptionen af Fedtstoffer, de kvantitative Methoder til Bestemmelse af disse og den alimentaere Lipaemi. Bibl. f. Laeg. 111, Suppl. pp. 1160.Google Scholar
Hagedobn, H. C. and Nobman-Jensen, B. (1923). Zur Mikrobestimmung des Blutzuckers mittels Ferricyanid. Biochem. Zeitschr. 135, 4658.Google Scholar
Hansen, S. V. and Mabctjssen, S. J. (1918). On the determination of urobilin in urine. J. Biol. Chem. 36, 381389.Google Scholar
Mayerhofer, J. cit. and Koenig, J. (1910). Chemie der menschlichen Nahrungs- und Qenussmittel, 3, part I, 441.Google Scholar
Schmidt, A. D. and Stbassbhrgeb, J. (1903). Die Faezes des Menschen, p. 207.Google Scholar
Willstätteb, R., Waldschmidt-Leitz, E. and Hesse, A. R. H. (1923). Ueber Pancreasamylase. Zeitschr. f. physiol. Chem. 126, 143168.Google Scholar
Wohlgemtjth, J. (1908). Ueber eine neue Methode zur quantitativen Bestimmung des diastatischen Fermentes. Biochem. Zeitschr. 9, 1.Google Scholar
Bieling, R. (1925). Versuche ueber die Bildung von Vitamin durch Bakterien. Zeitschr. f. Hygiene u. Infektionskr. 104, 347357.Google Scholar
Bielman, E. (1921). Sur l'hydrogénisation des Quinhydrones. Ann. de Chimie, Sér. IX, 15, 109.Google Scholar
Braddon, W. L. and Coopeb, E. A. (1914). The influence of metabolic factors in Beri-Beri. I. The effect of increasing the carbohydrate ration on the development of polyneuritis in birds fed on polished rice. J. of Hygiene, 14, 331353.CrossRefGoogle ScholarPubMed
Cooper, E. A. (1914). On the protective and curative properties of certain foodstuffs against polyneuritis induced in birds by a diet of polished rice. J. of Hygiene, pp. 1222.CrossRefGoogle ScholarPubMed
Damon, S. R. (1921). Bacteria as a source of the water-soluble B-vitamin. J. Biol. Chem. 48, 379384.Google Scholar
Damon, S. R. (1923). Some observations in regard to growth-promoting substances of bacterial origin. J. Biol. Chem. 56, 895902.Google Scholar
Damon, S. R. (1924). Acid-fast bacteria as a source of vitamin B. J. Pathol. Bacteriol. 27, 163169.Google Scholar
Dtjtcher, R. A. and Francis, Emma (1924). Vitamin studies. X. Feeding technique in vitamin studies. Proc. Soc. exper. Biol. and Med. 21, 189193.Google Scholar
Eijkman, C, Van Hoogenhuijze, C. J. E. and Derks, T. J. G. (1922). The vitamine content of micro-organisms in relation to the composition of the culture medium. J. Biol. Chem. 50, 311314.CrossRefGoogle Scholar
Heller, V. G., Mcelboy, C. H. and Garlock, Bertha (1925). The effect of the bacterial flora on the biological test for vitamin B. J. Biol. Chem. 65, 255264.CrossRefGoogle Scholar
Mccollum, E. V., Simmonds, Nina and Becker, J. Ernestine (1925). Technique in the use of the rat for vitamin B studies. J. Biol. Chem. 63, 547551.Google Scholar
Norgaard, A. (1927). On the hydrogen ion concentration in-some food products and in faeces. Acta medica scandinavica. Rapport et Compt. rend. du XII congrès de méd. des pays du nord, Supplem. xvi.Google Scholar
Pacini, A. J. P. and Russell, Dorothy W. (1918). The presence of a growth-producing substance in cultures of typhoid bacilli. J. Biol. Chem. 34, 4349.Google Scholar
Poetier, P. and Randoin, Ltjcie (1920). Création de vitamines dans l'intestin des lapins recevant une nourriture stérilisée à haute température. Compt. rend, de I'Acad. des Set. 170, 478480.Google Scholar
Salmon, W. D. (1925). Vitamin B in the excreta of rats on a diet low in this factor. J. Biol. Chem. 65, 457462.CrossRefGoogle Scholar
Schetjnert, A. and Schibblich, M. (1922). Studien ueber die Magendarmflora polyneuritischer Tauben und die Bildung antineuritischen Vitamins durch Darmbakterien. Centralb. f. Bakteriologie, etc. I Abth. Originale, 88, 290298.Google Scholar
Schetjnert, A. and Schibblich, M. (1923). Zur Kenntnis der Vitamine. II. Ueber die Bildung von Vitamin B durch obligate Darmbakterien. Biochem. Zeitschr. 139, 5765.Google Scholar
Steenbock, H., Sell, Mariana T. and Nelson, E. M. (1923). Vitamine B. I. A modified technique in the use of the rat for determination of vitamine B. J. Biol. Chem. 55, 399410.CrossRefGoogle Scholar
Weill, E., Aeloing, F. and Dutotjrt, A. (1922). Essai de traitement de la carence du Pigeon par les cultures mortes ou vivantes de microbes intestinaux. Compt. rend, de la Soc. de Biol. 87, Tome n, 4952.Google Scholar
Wollman, E. (1921). Sur le rô1e des microorganismes dans la production des vitamines. Compt. rend, de la Soc. de Biol. 85, 801803.Google Scholar
Wollman, E. and Vagliano, M. (1922). Sur le role des microorganismes dans la production des vitamines. Recherches sur la production des vitamines de croissance par le Bacille bulgare et 1'Amylomucor β. Compt. rend, de la Soc. de Biol. 86, 832833.Google Scholar
Eijkman, C. (1897). Eine beriberi-ahnliche Krankheit der Hühner. Virchow's Arch. 148, 523.CrossRefGoogle Scholar
McCarrison, R. (1921). Studies in Deficiency Diseases.Google Scholar
McCarrison, R. (1924). Rice in relation to Beri-Beri in India. Proc. Boy. Soc. Med. 17, No. 8. Section of Tropical Diseases and Parasitology, pp. 6582.Google Scholar
Plimmer, R. H. A. (6. II. 1926). The relation of quantity of vitamin B to quantity of food. Brit. Med. J. i, 239.Google Scholar