Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:06:42.889Z Has data issue: false hasContentIssue false

Plasmid pattern analysis of natural bacterial isolates and its epidemiological implication

Published online by Cambridge University Press:  15 May 2009

E. Tietze
Affiliation:
Institut für Experimentelle Epidemiologie, DDR-3700 Wernigerode, Burgstrasse 37, German Democratic Republic
H. Tschäpe
Affiliation:
Institut für Experimentelle Epidemiologie, DDR-3700 Wernigerode, Burgstrasse 37, German Democratic Republic
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Natural isolates of Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Providencia stuartii were analysed to determine their plasmid content. This data allowed the identification of nosocomial strains of K. pneumoniae and P. stuartii and helped in the differentiation of epidemic strains of E. coli 0111 and S. typhimurium. Phenotypically similar isolates of S. typhimurium could be shown to be of independent origin using plasmid pattern analysis. The dissemination of a particular plasmid through different strains of S. typhimurium resulted in a simulation of a very widely distributed epidemic strain, because the plasmid interfered with the phage type of its host strain in addition to determining re sistance properties. Plasmid pattern analysis disclosed two independently existing but interacting epidemic processes: a bacterial ‘epidemic’ strain may become disseminated over a large territory and may predominate there for a long time; a single plasmid, however, may also become distributed through many different bacterial strains and may spread over a large territory. Plasmid pattern analysis provides a valuable and universal epidemiological laboratory method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Anderson, E. S., Threlfall, E. J., Care, J. M., Mcconnell, M. M. & Smith, H. R. (1977 a). Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East. Journal of Hygiene 79, 425448.CrossRefGoogle ScholarPubMed
Anderson, E. S., Ward, L. R., De Saxe, M. J. & De Sa, J. D. H. (1977b). Bacteriophage typing designations of Salmonella typhimurium. Journal of Hygiene 78, 297300.CrossRefGoogle ScholarPubMed
Barth, P. T., Richards, H. & Daura, N. (1978). Copy number of coexisting plasmids in E. coli K12. Journal of Bacteriology 135, 760765.CrossRefGoogle Scholar
Beard, J. P. & Conolly, J. C. (1975). Detection of a protein, similar to the sex pilus subunit, in the outer membrane of E. coli cells carrying a derepressed F-like R factor. Journal of Bacteriology 122, 5965.CrossRefGoogle Scholar
Bennett, P. M. & Richmond, M. H. (1976). Translocation of a discrete piece of DNA carrying on amp gene between replicons in E. coli. Journal of Bacteriology 126, 16.CrossRefGoogle Scholar
Burkardt, J. J., Mattes, R., Puhler, A. & Neumann, W. (1978). Electron microscopy and computerized evaluation of some partially denaturated group P resistance plasmids. Journal of General Microbiology 105, 5162.CrossRefGoogle Scholar
Callow, B. R. (1959). A new phage typing scheme for Salmonella typhimurium. Journal of Hygiene 57, 346359.CrossRefGoogle Scholar
Chabbert, Y. A., Scavizzi, M. R., Witcifltz, J. L., Gerbaud, G. R. & Bouanchaud, D. H. (1972). Incompatibility groups and the classification of fi resistance factors. Journal of Bacteriology 112, 666675.CrossRefGoogle ScholarPubMed
Christiansen, C., Christiansen, G., Bak, A. L. & Stenderup, A. (1973). Extrachromosomal DNA in different Enterobacteriaceae. Journal of Bacteriology 114, 367377.CrossRefGoogle Scholar
Daura, N. (1979). Plasmid classification: incompatibility grouping. In Placmid of Medical, Environmental and Commercial Importance (ed. K. N, Timmis and A, Pühler). pp 312. Elsevier North Holland: Biomedical Press 1979.Google Scholar
Eckhardt, T. (1978). A rapid method for the identification of plasmid DNA in bacteria. Plasmid 1, 584588.CrossRefGoogle ScholarPubMed
Falkenhagen, U., Tschxpe, H., Naumann, G. & Zingler, G. (1982). Der Einflufi von Plasmiden unterschiedlicher Inkompatibilitiits-gruppen auf die Serumsensibilität von Escheri chia coli K12. Zentralblatt für Bakteriologie, I. Abteilung Originale A 253, 164174. pattern analysisGoogle Scholar
Gottesman, S. & Adhya, S. (1977). Genetic, physical and restriction map of bacteriophage lambda. In DNS Ineertion Elements, Plasmid and Episomes (ed. A, Bukhari, J, Shapiro and S, Adhya), pp. 713718. New York: Cold Spring Harbor Lab. 1977.Google Scholar
Grindley, N. D. F., Humphreys, G. O., & Anderson, E. S. (1973). Molecular studies ofR factor incompatibility groups. Journal of Bacteriology 115, 387398.CrossRefGoogle Scholar
Guerry, P., Van Embden, J. & Falkow, S. (1974). Molecular nature of two nonconjugative plasmids carrying drug resistance genes. Journal of Bacteriology 117, 619630.CrossRefGoogle ScholarPubMed
HEDGES, R. W., Rodriouez-Lemoine, V. & Datta, N. (1975). R factors from Serratia marcescens. Journal of General Microbiology 86, 8892.CrossRefGoogle ScholarPubMed
Kado, C. I. & Lw, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. Journal of Bacteriology 145, 13651373.CrossRefGoogle ScholarPubMed
Kontomichalou, P., Mitani, M. & CLOWES, R. C. (1970). Circular R factor molecules controlling penicillinase synthesis, replicating under either relaxed or stringent control. Journal of Bacteriology 104, 3444.CrossRefGoogle ScholarPubMed
Kuhn, H., Rabsch, W., Tschxpe, H. & Tietze, E. (1982). Charakterisierung und Ausbreitung eines Salmonella-typhimurium-Epidemiestammes. Zeit8chrift für Arztliche Fortbildung 37, 390398.Google Scholar
Lilleengen, K. (1948). Typing of Salmonella typhimurium by means of bacteriophage. Ada Pat hologica, Microbiologica et Immunologica Scandinavica, Supplement 77.Google Scholar
Mchale, P. J., Keane, C. T. & Dougan, G. (1981). Antibiotic resistance in Providencia 8tuartii isolated in hospitals. Journal of Clinical Microbiology 13, 10991104.CrossRefGoogle ScholarPubMed
Meyers, J. A., Sanchez, D., Elwell, L. P. & Falkow, S. (1976). Simple agarose gel electrophoretic method for the identification and characterization of plasmid DNA. Journal of Bacteriology 127, 15291537.CrossRefGoogle Scholar
MøLLER, J. K.BAK, A. L., CHRISTIANSEN, C., CHRISTIANSEN, G. & STENDERUP, A. (1976).Extrachromosomal DNA in R factor harbouring Enterobacteriaceae. Journal of Bacteriology 125, 398403.CrossRefGoogle Scholar
Ohtsubo, E., Rosenbloom, M., Schrempf, H., Goebel, W. & ROSEN, J. (1978). Site specific recombination involved in the generation of small plasmids. Molecular and General Genetics 159, 131141.CrossRefGoogle ScholarPubMed
Penner, J. L., Hinton, N. A. & Hennessy, J. (1975). Biotypes of Proteus rettgeri. Journal of Clinical Microbiology 1, 136142.CrossRefGoogle ScholarPubMed
Pokrovski, V. I., Rische, H., Kilesso, V. A., Tschape, H., Roshnova, S., Rabsch, W., KUHN, H. & CHUDSCHENKO, G. W. (1982). The distribution of drug resistance in S. typhimurium strains isolated from different sources. Zhurnal Mikrobiologii, Epidemiologii Immunobiologii, 12/ 1982, 6065.Google Scholar
Rabsch, W., Tschape, H., Tietze, E. & Kuhn, H. (1982). Charakterisierung einzelner, von einem Epidemiestamm abweichender Salmonella typhimurium klone gleichen Lyso- und Biochemotyps mit Hilfe der Plasmidbestimmung. Zeitschrifl für die gesamte Hygiene und ihre Grenzgebeite, 28, 842844.Google Scholar
Reanney, D. (1976). Extrachromosomal elements as possible agents of adaptation and development. Bacteriological Reviews 40, 552590.CrossRefGoogle ScholarPubMed
Richards, H., Hughes, V. & Datta, N. (1981). Diversity of plasmids responsible for multiple resistance in Klebsiella serotype. Journal of Hygiene 86, 189194.CrossRefGoogle ScholarPubMed
Sewberg, D. R., Tompkins, L. S. & Falkow, S. (1981). Use of agarose gel electrophoresis of plasmid DNA to fingerprint gram negative bacilli. Journal of Clinical Microbiology 13, 11051108.CrossRefGoogle Scholar
So, M., GILL, R. & Falkow, S. (1975). Generation of a Cole Apr cloning vehicle which allows detection of inserted DNA. Molecular and General Genetics 142, 239249.CrossRefGoogle Scholar
Taylor, D. E. & Grant, R. B. (1977). R plasmids of the S incompatibility group belong to the H-2 incompatibility group. Antimicrobial Agents and Chemotherapy 12, 431434.CrossRefGoogle Scholar
Thomas, M. & Davies, R. W. (1975). Studies on the cleavage of bacteriophage lambda with EcoRI restriction endonuclease. Journal of Molecular Biology 91, 315328.CrossRefGoogle ScholarPubMed
Tietze, E., Prager, F. R. & Tschape, H. (1982). Characterization of the transposons Tn1822 and Tn1824 and the light they throw on the natural spread of resistance genes. Plasmid 8, 253260.CrossRefGoogle ScholarPubMed
Tietze, E., Tschape, H., Rabsch, W. & Kfhin, H. (1983). Plasmidmuster von Salmonella typhimurium-Stämmen des Lysotyps n.e. 1/72n.c aus der DDR. Zentralblatt für Bakteriologie, I. Abteilung Originale A 254, (In the Press).Google Scholar
Tschape, H. & Tietze, E. (1980). Genetic and molecular characterization of R plasmids incompatible with R387 (IncK). Journal of General Mü 118, 515521.Google ScholarPubMed
Tscnipu, H. & Tietze, E. (1981). Genetische und molekulare Grundlagen der Plasmid Spezies-Hypothese. Biologisches Zentralblat 100, 353384.Google Scholar
Tschape, H., Tietze, E. & Kocu, C. (1981). Characterization of conjugative R plaemids belonging to the new incompatibility group Inc. Journal of General Microbiology 427, 155160.Google Scholar
Willshaw, G. A., Smith, H. R. & Anderson, E. S. (1978). Molecular studies of FIme resistance plasmids, particularly in epidemic Salmonella typhimurium. Molecular and General Genetic 159, 111116.CrossRefGoogle ScholarPubMed
Willshaw, G. A., Threlfall, E. J., Ward, L. R., Ashley, A. S. & ROWE, B. (1980). Plasmid studies of drug resistant epidemic strains of S. typhimurium belonging to phage types 204 and 193. Journal of Anlimicrobial Chemotherapy 6, 763774.CrossRefGoogle Scholar
Zasloff, M., Gdider, G. D. & Felsenfeld, G. (1978). A new method for the purification and identification of covalently closed circular DNA molecules. Nneleic Acid Reeearch 5, 11391152.CrossRefGoogle Scholar