Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T00:59:24.855Z Has data issue: false hasContentIssue false

Non-replicating expression vectors: applications in vaccine development and gene therapy

Published online by Cambridge University Press:  15 May 2009

K. J. Limbach
Affiliation:
Virogenetics Corporation, Rensselaer Technology Park, 465 Jordan Road, Troy, New York, U.S.A.12180
E. Paoletti*
Affiliation:
Virogenetics Corporation, Rensselaer Technology Park, 465 Jordan Road, Troy, New York, U.S.A.12180
*
* To whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review presents experimental, preclinical and clinical data illustrating the multiple uses of recombinant non-replicating virus vectors in the fields of immunoprophylaxis and gene therapy.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1996

References

REFERENCES

1.Panicali, D, Paoletti, E. Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia. Proc Natl Acad Sci USA 1982; 79: 4927–31.CrossRefGoogle ScholarPubMed
2.Mackett, M, Smith, G, Moss, B. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA 1982; 79: 7415–9.CrossRefGoogle ScholarPubMed
3.Goebel, S, Johnson, G, Perkus, M, Davis, S, Winslow, J, Paoletti, E. The complete DNA sequence of vaccinia virus. Virol 1990; 179: 247–66.CrossRefGoogle ScholarPubMed
4.Perkus, M, Goebel, S, Davis, S, Johnson, G, Norton, E, Paoletti, E. Deletion of 55 open reading frames from the termini of vaccinia virus. Virol 1991; 180: 406–10.CrossRefGoogle ScholarPubMed
5.Smith, G, Moss, B. Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 1983; 25: 21–8.CrossRefGoogle ScholarPubMed
6.Blancou, J, Kieny, M, Lathe, R et al. , Oral vaccination of the fox against rabies using a live recombinant vaccinia virus. Nature 1986; 322: 373–6.CrossRefGoogle ScholarPubMed
7.Rupprecht, C, Wiktor, T, Johnston, D et al. , Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proc Natl Acad Sci 1986; 83: 7947–51.CrossRefGoogle ScholarPubMed
8.Brochier, B, Kieny, M, Costy, F et al. , Large-scale eradication of rabies using recombinant vaccinia-rabies vaccine. Nature 1991; 354: 520–2.CrossRefGoogle ScholarPubMed
9.Pastoret, PP, Brochier, B. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies: a link between Jenner and Pasteur. Epidemiol Infect 1996; 116: (accompanying article).CrossRefGoogle ScholarPubMed
10.Mackett, M, Yilma, T, Rose, J, Moss, B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science 1985; 227: 433–6.CrossRefGoogle ScholarPubMed
11.Taylor, J, Weinberg, R, Tartaglia, J et al. , Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins. Virol 1992; 187: 321–8.CrossRefGoogle ScholarPubMed
12.Yilma, T, Hus, D, Jones, L et al. , Protection of cattle against rinderpest with vaccinia virus recombinants expressing the HA or F gene. Science 1988; 242: 1058–61.CrossRefGoogle ScholarPubMed
13.Riviere, M, Tartaglia, J, Perkus, M et al. , Protection of mice and swine from pseudorabies virus conferred by vaccinia virus-based recombinants. J Virol 1992; 66: 3424–34.CrossRefGoogle ScholarPubMed
14.Bowen, R, Short, W, Cropp, C et al. , Protection of horses immunized with recombinant vaccinia-Venezuelan equine encephalitis vaccine. Vaccine Res 1992; 1: 111–21.Google Scholar
15.Neff, J. Vaccinia virus vaccines: Virulence and at tenuation of vaccinia strain variation. In: Quinnan, G, ed. Vaccinia viruses as vectors for vaccine antigens. New York, New York: Elsevier Science Publishing Co., 1985: 6975.Google Scholar
16.Morgan, A, Mackett, M, Finerty, S, Arrand, J, Scullion, F, Epstein, M. Recombinant vaccinia virus expressing Epstein-Barr virus glycoprotein gp340 protects cottontop tamarins against EB virus-induced malignant lymphomas. J Med Virol 1988; 25: 189–95.CrossRefGoogle ScholarPubMed
17.Tartaglia, J, Perkus, M, Taylor, J et al. , NYVAC: a highly attenuated strain of vaccinia virus. Virol 1992; 188: 217–32.CrossRefGoogle ScholarPubMed
18.Konishi, E, Pincus, S, Paoletti, E, Laegreid, W, Shope, R, Mason, P. A highly attenuated host range-restricted vaccinia virus strain, NYVAC, encoding the prM, E and NS1 genes of Japanese encephalitis virus prevents JEV viremia in swine. Virol 1992; 190: 454–8.CrossRefGoogle ScholarPubMed
19.Tartaglia, J, Cox, W, Pincus, S, Paoletti, E. Safety and immunogenicity of recombinants based on the genetically-engineered vaccinia strain, NYVAC. In: Brown, F, ed. Recombinant vectors in vaccine development. Dev Biol Stand, Basel: Karger, 1994; 82: 125–9.Google Scholar
20.Brockmeier, S, Lager, K, Tartaglia, J, Riviere, M, Paoletti, E, Mengeling, W. Vaccination of pigs against pseudorabies with highly attenuated vaccinia (NYVAC) recombinant viruses. Vet Micro 1993; 38: 4158.CrossRefGoogle ScholarPubMed
21.Esposito, J, Knight, J, Shaddock, J, Novembre, F, Bauer, G. Successful oral rabies vaccination of raccoons with raccoon poxvirus recombinants expressing rabies virus glycoprotein. Virol 1988; 165: 313–6.CrossRefGoogle ScholarPubMed
22.Webster, R, Kawaoka, Y, Taylor, J, Weinberg, R, Paoletti, E. Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine 1991; 9: 303–7.CrossRefGoogle ScholarPubMed
23.Nazarian, K, Lee, L, Yanagida, N, Ogawa, R. Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. J Virol 1992; 66: 1409–13.CrossRefGoogle Scholar
24.Taylor, J, Edbauer, C, Rey-Senelonge, A et al. , Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J Virol 1990; 64: 1441–50.CrossRefGoogle Scholar
25.Edbauer, C, Weinberg, R, Taylor, J et al. , Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virol 1990; 179: 901–4.CrossRefGoogle ScholarPubMed
26.Taylor, J, Weinberg, R, Languet, B, Desmettre, P, Paoletti, E. Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 1988; 6: 497503.CrossRefGoogle ScholarPubMed
27.Taylor, J, Trimarchi, C, Weinberg, R et al. , Efficacy studies on a canarypox-rabies recombinant virus. Vaccine 1991; 9: 190–3.CrossRefGoogle ScholarPubMed
28.Taylor, J, Tartaglia, J, Moran, T et al. , The role of poxvirus vectors in influenza vaccine development. In: Proceedings of the Third International Symposium on Avian Influenza. University of Wisconsin-Madison Extension Duplicating Services, 1992.Google Scholar
29.Tartaglia, J, Jarrett, O, Neil, J, Desmettre, P, Paoletti, E. Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. J Virol 1993; 67: 2370–5.CrossRefGoogle ScholarPubMed
30.Cadoz, M, Strady, A, Meignier, B et al. , Immunisation with canarypox virus expressing rabies glycoprotein. Lancet 1992; 339: 1429–32.CrossRefGoogle ScholarPubMed
31.Pialoux, G, Excler, J, Riviere, Y et al. , A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). AIDS Res Hum Retro 1995; 11: 373–81.CrossRefGoogle ScholarPubMed
32.Egan, M, Pazlat, W, Tartaglia, J et al. , Induction of human immunodeficiency virus type 1 (HlV-l)-specific cytolytic T lymphocyte responses in seronegative adults by a nonreplicating, host-range-restricted canarypox vector (ALVAC) carrying the HIV–1MN env gene. J Infect Dis 1995; 171: 1623–7.CrossRefGoogle Scholar
33.Taylor, J, Tartaglia, J, Riviere, M et al. , Applications of canarypox (ALVAC) vectors in human and veterinary vaccination. In: Brown, F, ed. Dev Biol Stand Basel: Karger, 1994; 82: 131–5.Google ScholarPubMed
34.Plotkin, S, Cadoz, M, Meignier, B. The safety and use of canarypox vectored vaccines. Dev Biol Stand, Basel, Karger, 1995: 165–70.Google ScholarPubMed
35.Cooney, E, Collier, A, Greenberg, P et al. , Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 1991; 337: 567–72.CrossRefGoogle ScholarPubMed
36.Lotze, M, Chang, A, Seipp, C, Simpson, C, Vetto, J, Rosenberg, S. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. J AMA 1986; 526: 3117–24.Google Scholar
37.Hodge, J, Abrams, S, Schlom, J, Kantor, J. Induction of antitumor immunity by recombinant vaccinia viruses expressing B7–1 or B7–2 costimulatory molecules. Cancer Res 1994; 54: 5552–5.Google ScholarPubMed
38.Van Der Bruggen, P, Traversari, C, Chomez, P et al. , A gene encoding an antigen recognized by cytolytic Tlymphocytes on a human melanoma. Science 1991; 254: 1643–7.CrossRefGoogle Scholar
39.Toso, J, Oei, C, Oshidari, F et al. , MAGE-1 specific CTLp present among tumor infiltrating lymphocytes from a patient with breast cancer: Characterization and antigen-specific activation. Cancer Res 1996; (In press).Google Scholar
40.Tartaglia, J, Taylor, J, Cox, W et al. , Novel poxvirus strains as research tools and vaccine vectors. In: Koff, W, Wong-Staal, F, Kennedy, R, eds. AIDS research reviews. New York: Marcel Dekker, 1993; 3: 361–78.Google Scholar
41.Perricaudet, M, Stratford-Perricaudet, L. Adenovirus-mediated in vivo gene therapy. In: Vos, J, ed. Viruses in human gene therapy. Durham, North Carolina: Carolina Academic Press, 1995: 132.Google Scholar
42.Berkner, K, Sharp, P. Preparation of adenovirus recombinants using plasmids of viral DNA. In: Gluzman, Y, ed. Eukaryotic viral vectors. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory, 1982: 193–8.Google Scholar
43.Zabner, J, Couture, L, Gregory, R, Graham, S, Smith, A, Welsh, M. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 1993; 75: 207–16.CrossRefGoogle ScholarPubMed
44.Dai, Y, Schwarz, E, Gu, D, Zhang, W, Sarvetnick, N, Verma, I. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: Tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–5.CrossRefGoogle ScholarPubMed
45.Kay, M, Landen, C, Rothenberg, S et al. , In vivo hepatic gene therapy: Complete albeit transient correction of factor IX deficiency in hemophilia B dogs. Proc Natl Acad Sci USA 1994; 91: 2353–7.CrossRefGoogle ScholarPubMed
46.Wesseling, J, Godeke, G, Schijns, V et al. , Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 1993; 74: 2061–9.CrossRefGoogle ScholarPubMed
47.Prevec, L, Campbell, J, Christie, B, Belbeck, L, Graham, F. A recombinant human adenovirus vaccine against rabies. J Infect Dis 1990; 161: 2730.CrossRefGoogle ScholarPubMed
48.Krilov, L, Rubin, L, Frogel, M et al. , Disseminated adenovirus infection with hepatic necrosis in patients with human immunodeficiency virus infection and other immunodeficiency states. Rev Infect Dis 1990; 12: 303–7.CrossRefGoogle ScholarPubMed
49.Stanley, E, Jackson, G. Spread of enteric live adenovirus type 4 vaccine in married couples. J Infect Dis 1969; 119: 51–9.CrossRefGoogle ScholarPubMed
50.Mueller, R, Muldoon, R, Jackson, G. Communicability of enteric live adenovirus type 4 vaccine in families. J Infect Dis 1969; 119: 60–6.CrossRefGoogle ScholarPubMed
51.Ginsberg, H, Lundholm-Beauchamp, U, Horswood, R et al. , Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 1989; 86: 3823–7.CrossRefGoogle ScholarPubMed
52.Tacket, C, Losonsky, G, Lubeck, M et al. , Initial safety and immunogenicity studies of an oral recombinant adenohepatitis B vaccine. Vaccine 1992; 10: 673–6.CrossRefGoogle ScholarPubMed
53.Natuk, R, Lubeck, M, Chanda, P et al. , Immunogenicity of recombinant human adenovirus-human immuno deficiency virus vaccines in chimpanzees. AIDS Res Hum Retro 1993; 9: 395404.CrossRefGoogle Scholar
54.Ragot, T, Finerty, S, Watkins, P, Perricaudet, M, Morgan, A. Replication-defective recombinant adenovirus expressing the Epstein-Barr virus (EBV) envelope glycoprotein gp340/220 induces protective immunity against EBV-induced lymphomas in the cottontop tamarin. J Gen Virol 1993; 74: 501–7.CrossRefGoogle ScholarPubMed
55.Eloit, M, Adam, M. Isogenic adenoviruses type 5 expressing or not expressing the E1A gene: efficiency as virus vectors in the vaccination of permissive and nonpermissive species. J Gen Virol 1995; 76: 1583–9.CrossRefGoogle ScholarPubMed
56.Rosenfeld, M, Toshimura, K, Trapnelli, B. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 1992; 68: 143–55.CrossRefGoogle Scholar
57.Grubb, B, Pickles, R, Ye, H et al. , Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 1994; 371: 802–6.CrossRefGoogle ScholarPubMed
58.Knowles, M, Hohneker, K, Zhou, Z et al. , A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med 1995; 333: 823–31.CrossRefGoogle ScholarPubMed
59.Yao, S, Wilson, J, Nabel, E, Kurachi, H, Hachiya, H, Kurachi, K. Expression of human factor IX in rat capillary endothelial cells: toward somatic gene therapy for hemophilia B. Proc Natl Acad Sci USA 1991; 88: 8101–5.CrossRefGoogle ScholarPubMed
60.Dai, Y, Roman, M, Naviaux, R, Verma, I. Gene therapy via primary myoblasts: Long-term expression of factor IX protein following transplantation in vivo. Proc Natl Acad Sci USA 1992; 89: 10892–5.CrossRefGoogle ScholarPubMed
61.Armentano, D, Thompson, A, Darlington, G, Woo, S. Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: Potential for gene therapy of hemophilia B. Proc Natl Acad Sci USA 1990; 87: 6141–5.CrossRefGoogle ScholarPubMed
62.Stratford-Perricaudet, L, Makeh, I, Perricaudet, M, Briand, P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 1992; 90: 626–30.CrossRefGoogle Scholar
63.Bennett, J, Wilson, J, Sun, D, Forbes, B, Maguire, A. Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Visual Sci 1993; 35: 2535–42.Google Scholar
64.Imperiale, M, Kao, H, Feldman, L, Nevins, J, Strickland, S. Common control of the heat shock gene and early adenovirus genes: Evidence for a cellular ElA-like activity. Mol Cell Bio 1984; 4: 867–74.Google Scholar
65.Yang, Y, Ertl, H, Wilson, J. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with El-deleted recombinant adenoviruses. Immunity 1994; 1: 433–12.CrossRefGoogle Scholar
66.Yang, Y, Nunes, F, Barencsi, K, Gonczol, E, Engelhardt, J, Wilson, J. Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet 1994; 7: 362–9.CrossRefGoogle ScholarPubMed
67.Engelhardt, J, Ye, X, Doranz, B, Wilson, J, Ablation of E2a in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 1994; 91: 6196–200.CrossRefGoogle ScholarPubMed
68.Haddada, H, Ragot, T, Cordier, L, Duffour, M, Perricaudet, M. Adenoviral interleukin-2 gene transfer into P815 tumour cells abrogates tumorigenicity and induces antitumoral immunity in mice. Hum Gene Ther 1993; 4: 703–11.CrossRefGoogle ScholarPubMed
69.Cordier, L, Duffour, M, Sabourin, J et al. , Complete recovery of mice from a pre-established tumour by direct intratumoral delivery of an adenovirus vector harbouring the murine IL-2 gene. Gene Ther 1995; 2: 1621.Google ScholarPubMed
70.Morgan, R. Retroviral vectors in human gene therapy. In: Vos, J, ed, Viruses in human gene therapy. Durham North Carolina: Carolina Academic Press, 1995; 77107.CrossRefGoogle Scholar
71.Meerovitch, K, Sonenberg, N. Internal initiation of picornavirus RNA translation. Seminars Virol 1993; 4: 217–27.CrossRefGoogle Scholar
72.Miller, A, Buttimore, C. Redesign of retrovirus pack aging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 1986; 6: 2895–902.Google Scholar
73.Hunt, L, Brown, D, Robinson, H, Naeve, C, Webster, R. Retrovirus-expressed hemagglutinin protects against lethal influenza virus infections. J Virol 1988; 62: 3014–19.CrossRefGoogle ScholarPubMed
74.Blaese, R, Anderson, W. The ADA human gene therapy clinical protocol. Hum Gene Ther 1990; 1: 327–62.Google Scholar
75.Blaese, R, Culver, K, Miller, A et al. , T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995; 270: 475–80.CrossRefGoogle ScholarPubMed
76.Kay, M, Rothenberg, S, Landen, C et al. , In vivo gene therapy of hemophilia B: Sustained partial correction in factor IX-defkient dogs. Science 1993; 262: 117–19.CrossRefGoogle ScholarPubMed
77.Wilson, J, Chowdhury, N, Grossman, M et al. , Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc Natl Acad Sci USA 1990; 87: 8437–41.CrossRefGoogle ScholarPubMed
78.Ferry, N, Duplessis, O, Houssin, D, Danos, O, Heard, J. Retroviral-mediated gene transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 1991; 88: 8377–81.CrossRefGoogle ScholarPubMed
79.Yee, J, Miyanohara, A, LaPorte, P, Bouic, K, Burns, J, Friedmann, T. A general method for the generation of high-titer, pantropic retroviral vectors: Highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 1994; 91: 9564–8.CrossRefGoogle ScholarPubMed
80.Miyanohara, A, Yee, J, Bouic, K, LaPorte, P, Friedmann, T. Efficient in vivo transduction of the neonatal mouse liver with pseudotyped retroviral vectors. Gene Ther 1995; 2: 138–42.Google ScholarPubMed
81.Watanabe, Y, Kuribayashi, K, Miyatake, S et al. , Exogenous expression of mouse interferon cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 1989; 86: 9456–60.CrossRefGoogle ScholarPubMed
82.Gansbacher, B, Zier, K, Daniels, B, Cronin, K, Bannerji, R, Gilboa, E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990; 172: 1217–24.CrossRefGoogle ScholarPubMed
83.Dranoff, G, Jaffee, E, Lazenby, A et al. , Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–3.CrossRefGoogle ScholarPubMed
84.Fakhrai, H, Shawler, D, Gjerset, R et al. , Cytokine gene therapy with interleukin-2-transduced fibroblasts: Effects of IL-2 dose on anti-tumor immunity. Hum Gene Ther 1995; 6: 591601.CrossRefGoogle ScholarPubMed
85.Samulski, R. Adeno-associated viral vectors. In Vos, J, ed. Viruses in human gene therapy. Durham, North Carolina: Carolina Academic Press, 1995: 5376.CrossRefGoogle Scholar
86.Flotte, T, Afione, S, Conrad, C et al. , Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci USA 1993; 90: 10613–17.CrossRefGoogle ScholarPubMed
87.Morgan, R, Anderson, W. Human gene therapy. Ann Rev Bio 1993; 62: 191217.CrossRefGoogle ScholarPubMed