Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T00:07:51.227Z Has data issue: false hasContentIssue false

Malaria transmission rates estimated from serological data

Published online by Cambridge University Press:  15 May 2009

M. N. Burattini
Affiliation:
Discipline of Medical Informatics, School of Medicine, the University of São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246–903, Brazil and LIM 01, HCFMUSP, São Paulo, Brazil Discipline of Infectious and Parasitic Diseases, Escola Paulista de Medicina
E. Massad
Affiliation:
Discipline of Medical Informatics, School of Medicine, the University of São Paulo, Av. Dr. Arnaldo 455, São Paulo, CEP 01246–903, Brazil and LIM 01, HCFMUSP, São Paulo, Brazil
F. A. B. Coutinho
Affiliation:
Institute of Physics of the University of São Paulo, CP 20516, 01498, São Paulo, Brazil
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A mathematical model was used to estimate malaria transmission rates based on serological data. The model is minimally stochastic and assumes an age-dependent force of infection for malaria. The transmission rates estimated were applied to a simple compartmental model in order to mimic the malaria transmission.

The model has shown a good retrieving capacity for serological and parasite prevalence data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

1.Ross, R. The prevention of malaria, 2nd ed. London: John Murray, 1911.Google ScholarPubMed
2.Ross, R. Some a priori pathometric equation. B M J 1915; 1: 546–7.CrossRefGoogle Scholar
3.Ross, R. An application of the theory of probabilities to the study of a priori pathometry, I. Proc R Soc, A 1916; 92: 204–30.Google Scholar
4.Ross, R, Hudson, HP. An application of the theory of probabilities to the study of a priori pathometry, III. Proc R Soc, A 1917; 93: 225–40.Google Scholar
5.Macdonald, G. The analysis of infection rates in diseases in which superinfection occurs. Trop Dis Bull 1950; 47: 907–15.Google Scholar
6.Macdonald, G. The analysis of equilibrium in malaria. Trop Dis Bull 1952; 49: 813–28.Google Scholar
7.Macdonald, G. The analysis of malaria epidemics. Trop Dis Bull 1953; 50: 871–89.Google ScholarPubMed
8.Dietz, K, Molineaux, L, Thomas, A. A malaria model tested in the African savannah. Bull WHO 1974; 50: 347–57.Google ScholarPubMed
9.Garret-Jones, C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull WHO 1964; 30: 241–61.Google Scholar
10.Molineaux, L. The pros and cons of modelling malaria transmission. Trans R Soc Trop Med Hyg 1985; 79: 743–7.CrossRefGoogle ScholarPubMed
11.Bruce-Chwatt, LJ. Essential malariology, 2nd ed. London: William Heinemann Books. 1985.Google Scholar
12.Dye, C, Hasibeder, G. Mosquito-borne disease dynamics: control of flies which bite some people more frequently than others. Trans Roy Soc Trop Med Hyg 1986; 80: 6977.CrossRefGoogle ScholarPubMed
13.Draper, CC, Voller, A, Carpenter, RG. The epidemiologic interpretation of serological data in malaria. Am J Trop Med Hyg 1972; 21: 696703.CrossRefGoogle ScholarPubMed
14.Meuwissen, JHETh. Introductory remarks on seroepidemiology and immunodiagnosis of malaria. Israel J Med Sci 1978; 14: 687–9.Google Scholar
15.VanDruten, JAM. A mathematical-statistical model for the analysis of cross-sectional data with special reference to the epidemiology of malaria. PhD Thesis. Nijmegen, Netherlands: The Katholiek Universiteit, 1981.Google Scholar
16.Papoulis, A. Probability, random variables and stochastic processes. Tokyo: McGraw-Hill International Book Company, 1981.Google Scholar
17.Merlin, M, Lettesram, JY, Josse, R, et al. Évaluation des indices cliniques, parasitologiques et immunologiques du paludisme dans la région de la baie Bonny en Afrique Centrale. Bull Soc Pathol Exot Fil 1986; 79: 707–20.Google Scholar
18.Bailey, NTJ. The mathematical theory of infectious diseases, 2nd ed. London: High Wycombe: Charles Griffin & Company Ltd, 1975.Google Scholar
19.Dragna, A, Marinov, R, Mihai, M. Contribution a l'étude de l'immunité rèsiduelle aux paludisme en Roumanie. Bull WHO 1969; 40: 753–61.Google Scholar
20.Luby, JP, Collins, WE, Kaiser, RL. Persistence of malaria antibody. Findings in patients infected during the outbreak of malaria in Lake Vera, California 1952–1953. Am J Trop Med Hyg 1967; 16: 255–7.Google Scholar
21.Collins, WE, Skinner, JC, Jeffery, GM. Studies on the persistence of malarial antibody response. Am J Epidemiol 1968; 87: 592–8.CrossRefGoogle ScholarPubMed
22.Carnevale, P, Frézil, JL, Bosseno, MF, LePont, F, Lancien, J. Etude de l'agressivité d'Anopheles gambiae en fonction de l'âge et du sexe des sujets humains. Bull WHO 1978: 56: 147–54.Google Scholar
23.Muirhead-Thomson, RC. The distribution of anopheline mosquito bites among different age groups. B M J 1951; 1: 1114–7.CrossRefGoogle ScholarPubMed
24.Clyde, DF, Shute, GT. Selective feeding habits of anophelines amongst Africans of different ages. Am J Trop Med Hyg 1958; 7: 543–5.CrossRefGoogle ScholarPubMed
25.Molineaux, L, Gramicia, G. The Garki Project. Geneva: World Health Organisation, 1980.Google Scholar
26.Bruce-Chwatt, LJ, Draper, CC, Konfortion, P. Sero-epidemiological evidence of eradication of malaria from Mauritius. Lancet 1973; ii: 547–51.CrossRefGoogle Scholar
27.Dietz, K. Mathematical models for transmission and control of malaria. In: Wernsdorfer, WH. McGregor, I, eds. Malaria: principles and practice of malariology. London: Churchill Livingstone, 1988: 1091–133.Google Scholar
28.Molineaux, L. The epidemiology of human malaria as an explanation of its distribution, including some implications for its control. In: Wernsdorfer, WH, McGregor, I, eds. Malaria: principles and practice of malariology. London: Churchill-Livingstone, 1988: 913–98.Google Scholar
29. Committee of Experts on Malaria. Report of the Scientific Work Group on Immunology of Malaria and on Applied Field Research in Malaria. Technical Report TDR/IMMAL-FIELDMAL/SWG(2)/88.3. Geneva: World Health Organization, 1988.Google Scholar
30.Aron, JL. Mathematical modelling of immunity to malaria. Math Biosc 1988; 90: 385–96.Google Scholar
31.Nedelman, J. Introduction review: some new thoughts about some old malaria models. Math Biosc 1985; 73: 159–82.Google Scholar
32.Burattini, MN. Contribuição para o estudo da dinâmica da transmissão da malária a partir de inquérito sorepidemiológico transveral (port). [PhD. thesis]. São Paulo. Brazil: Escola Paulista de Medicina, 1989.Google Scholar
33.Burattini, MN, Massad, E, Coutinho, FAB, Baruzzi, RG. Malaria prevalence amongst Brazilian Indians assessed by a new mathematical model. Epidemiol Infect 1993; 111: 525537.Google Scholar
34.Burattini, MN. Epidemiologia da Malária no Parque Indígena do Xingu (port). [MA thesis]. São Paulo. Brazil: Escola Paulista de Medicina, 1987.Google Scholar
35.Burattini, MN, Baruzzi, RG, Wucker, S. Impact of DDT spraying in malaria transmission at an Indian reservation in Central Brazil. Proceedings of the International Congress for Infectious Diseases. Rio de Janeiro: International Society of Infectious Diseases, 1988: 153.Google Scholar
36.Burattini, MN, Baruzzi, RG, Sanchez-Ruiz, MCA, Castelo, A, Wey, SB. Comparação entre indice esplënico e sorologia como índices malariométricos na área do Baixo Xingu. Rev Soc Bras Med Trop 1986; 19 (suppl): 88.Google Scholar
37.Morse, PM, Feshbach, H. Methods of theoretical physics, vol. I. New York and Tokyo: McGraw-Hill Book Company Inc, 1953.Google Scholar
38.Aron, JL, May, RM. The population dynamics of malaria. In: Anderson, RM, ed. The population dynamics of infectious diseases: theory and applications. London and New York: Chapman and Hall, 1982; 139–79.CrossRefGoogle Scholar
39.Arfken, G. Mathematical methods for physicists. New York, San Francisco, London: Academic Press, 1970.Google Scholar
40.Feyman, RP, Hibbs, AR. Quantum mechanics and path integrals. New York: McGraw-Hill, 1965.Google Scholar