Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:58:18.061Z Has data issue: false hasContentIssue false

Isolation of salmonellas from sewage-polluted river water using selenite F and Muller–Kauffmann tetrathionate

Published online by Cambridge University Press:  15 May 2009

R. W. S. Harvey
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff
T. H. Price
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Selenite F broth and a modified Muller—Kauffmann tetrathionate broth were investigated using sewage-polluted natural water as inocula. The modification of the tetrathionate medium was necessary as commercial alternatives would not allow multiplication of small numbers of salmonellas.

The wide range of molar concentrations in different tetrathionate broths was emphasized.

Selenite F broth was more efficient than Muller—Kauffmann tetrathionate broth, in our hands, with the material tested. Direct inoculation of the enrichment media was used.

Each of the two media examined had a bias towards selection of certain sero types. If possible, both enrichment broths should be used to obtain maximum information.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Banwart, G. J., & Ayres, J. C. (1953). Effect of various enrichment broths and selective agars upon the growth of several species of salmonella. Applied Microbiology 1, 296.CrossRefGoogle ScholarPubMed
Edel, W., & Kampelmacher, E. H. (1969). Salmonella isolation in nine European laboratories using a standardized technique. Bulletin of the World Health Organization 41, 297.Google ScholarPubMed
Fisher, R. A., & Yates, F. (1963). Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. Longman: Edinburgh.Google Scholar
Harvey, R. W. S. (1956). Choice of selective medium for the routine isolation of members of the salmonella group. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 15, 118.Google ScholarPubMed
Harvey, R. W. S. (1957). The epidemiological signfficance of sewage bacteriology. British Journal of Clinical Practice 11, 751.Google Scholar
Harvey, R. W. S., & Price, T. H. (1967). The examination of samples infected with multiple salmonella serotypes. Journal of Hygiene 65, 423.CrossRefGoogle ScholarPubMed
Harvey, R. W. S., & Price, T. H. (1968). Elevated temperature incubation of enrichment media for the isolation of salmonellas from heavily contaminated materials. Journal of Hygiene 66, 377.CrossRefGoogle ScholarPubMed
Harvey, R. W. S., & Price, T. H. (1974). Isolation of salmonellas. Public Health Laboratory Service Monograph Series, no. 8, London: H.M.S.O.Google Scholar
Harvey, R. W. S., & Price, T. H. (1975). Studies on the isolation of Salmonella dublin. Journal of Hygiene 74, 369.Google Scholar
Harvey, R. W. S., Price, T. H., & Crone, P. B. (1975). Quality control tests of two salmoriella enrichment media using different inocula. Journal of Hygiene 74, 375.CrossRefGoogle ScholarPubMed
Harvey, R. W. S., & Thomson, S. (1953). Optimum temperature of incubation for isolation of salmonellae. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 12, 149.Google ScholarPubMed
Hobbs, B. C., & Allison, V. D. (1945). Studies on the isolation of Bact. typhonum and Bact. paratyphosum B. Monthly Bulletin of the Ministry of Health and the Emergency Public Health Laboratory Service 4, 12.Google ScholarPubMed
Kauffmann, F. (1930). Ein kombiniertes Anreichenmgs-verfahren für Typhus- und Paratyphusbazillen. Zentralblatt für Bakteriologie, Parasitenkunde, Infectionskrankheiten und Hygiene (I. Abt.: Orig.) 119, 148.Google Scholar
Kauffmann, F. (1935). Weitere Erfahrungen mit dem kombinierten Anreicherungsverfahren für Salmonella bazillen. Zeitschrift für Hygiene und Infectionskrankheiten 117, 26.CrossRefGoogle Scholar
Knox, R., GELL, P. G. H., & Pollock, M. R. (1942). Selective media for organisms of the salmonella group. Journal of Pathology and Bacteriology 54, 469.CrossRefGoogle Scholar
Knox, R., Gell, P. G. H., & Pollock, M. R. (1943). The selective action of tetrathionate in bacteriological media. Journal of Hygiene 43, 147.CrossRefGoogle ScholarPubMed
Morgan, J. (1974). Technical factors influencing salmonella surveillance I.M.L.T. Thesis, University Hospital of Wales.Google Scholar
Muller, L. (1923). Un nouveau milieu d'enrichissement pour Ia recherche du bacille typhique et des paratyphiques. Comptes Rendus des Séances de la Société de Biologie et de see Filiales 89, 434.Google Scholar
Roberts, D., Boag, K., Hall, M. L. M., & Snipp, C. R. (1975). The isolation of Salmonellas from British pork sausages and sausage meat. Journal of Hygiene 75, 173.CrossRefGoogle ScholarPubMed
Rolfe, V. (1946). A note on the preparation of tetrathionate broth. Monthly Bulletin of the Ministry of Health and the Emergency Public Health Laboratory Service 5, 158.Google ScholarPubMed
Smith, H. W. (1952). The evaluation of culture media for the isolation of salmonellae from faeces. Journal of Hygiene 50, 21.Google Scholar
Smith, H. W. (1970). Incidence in river water of Escherichia coli containing R factors. Nature, London 228, 1286.CrossRefGoogle ScholarPubMed
Stokes, E. J. (1968). In Clinical Bacteriology, 3rd ed., p. 306. London: Arnold.Google Scholar
Vassiliadis, P., Pateraki, E., Papadakis, J., & Trichopoulos, D. (1974). Evaluation of the growth of salmonellae in Rappaport's broth and in Muller—Kauffmann's tetrathionate broth. Journal of Applied Bacteriology 37, 411.CrossRefGoogle ScholarPubMed