Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:24:25.519Z Has data issue: false hasContentIssue false

The interaction of tetanus toxin and antitoxin

Published online by Cambridge University Press:  15 May 2009

B. Cinader
Affiliation:
The Lister Institute of Preventive Medicine, London and Elstree
B. Weitz
Affiliation:
The Lister Institute of Preventive Medicine, London and Elstree
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tetanus antitoxic horse sera were fractionated with sodium sulphate and by electrophoretic separation. The activity of the native serum and of fractions was determined in vivo in the mouse and guinea-pig and in vitro by the flocculation method. All the sera and fractions showed several zones of flocculation. The flocculation optimum corresponding to the toxin-antitoxin complex was selected by absorption of antitoxin to the floccules. The distribution of activity amongst the electrophoretic components of the native serum was computed from electrophoretic analysis, refractive increment measurements and assays of the activity of the electrophoretically pure fractions.

In all the sera examined the antitoxin was associated with both β- and γ-globulin. The γ-globulin antitoxin had a shorter flocculation time and a higher in vivo/in vitro ratio than β-globulin. The in vivo/in vitro ratio of γ-globulin was two to three times that of β-globulin antitoxin, its exact value depending on the toxin concentration against which the antitoxin was measured. The avidity of γ-globulin antitoxin was greater than that of β-globulin antitoxin judged by two independent ‘dilution’ tests, namely a comparison of the mouse unitage using two concentrations of toxin and a comparison of the values obtained with one concentration of toxin in the mouse and in the guinea-pig. The in vivo values of the various antitoxins varied with the toxin employed in the test.

During the first course of immunization in a horse the γ-globulin antitoxin rose to a constant value; β-globulin antitoxin increased to a still higher value later in the course. The avidity of the serum, as measured by the two ‘dilution’ ratios, also increased during immunization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1953

References

Abramson, H. A., Moyer, L. S. & Gorin, M. H. (1942). Electrophoresis of Proteins. New York: Reinhold Publishing Corporation.Google Scholar
Abt, G. & Erber, B. (1926). Sur le titrage des antitoxines et des toxines tétaniques par la floculation. Ann. Inst. Pasteur, 40, 659.Google Scholar
Cinader, B. & Weitz, B. (1950). Beta and gamma-globulin tetanus antitoxin of the hyperimmune horse. Nature, Lond., 166, 785.CrossRefGoogle ScholarPubMed
Cruveilhier, L. (1905). De la valeur thérapeutique de I'antitoxine dans le sérum antidiphthérique. Ann. Inst. Pasteur, 19, 249.Google Scholar
Eaton, M. D. & Gronau, A. (1938). Comparative studies on the purification of tetanus and diphtheria toxins. J. Bact. 36, 423.CrossRefGoogle ScholarPubMed
Glenny, A. T. (1931). Active immunization with toxins. A System of Bacteriology in Relation to Medicine, 6, 106. London: H.M. Stationery Office.Google Scholar
Glenny, A. T. & Barr, M. (1932). The ‘dilution ratio’ of diphtheria antitoxin as a measure of avidity. J. Path. Bact. 35, 91.CrossRefGoogle Scholar
Glenny, A. T., Barr, M., Ross, H. E. & Stevens, M. F. (1932). The influence of avidity upon the standardization of antitoxins. J. Path. Bact. 35, 495.CrossRefGoogle Scholar
Jerne, N. K. (1951). A study of avidity. Acta path. microbiol. scand. (Suppl. LXXXVII).Google ScholarPubMed
Kalic, D. Z. (1928). Floculation non-spécifique du sérum antitétanique. C.R. Soc. Biol., Paris, 98, 649.Google Scholar
Kekwick, R. A. (1941). The constitution of some antitoxic horse sera. Chem. & Ind. 60, 486.Google Scholar
Kekwick, R. A., Knight, B. C. J. G.Macfarlane, M. G. & Record, B. R. (1941). Composition of diphtheria antitoxic sera. Lancet, i, 571.CrossRefGoogle Scholar
Kekwick, R. A. & Record, B. R. (1941). Some physical properties of diphtheria antitoxic horse sera. Brit. J. exp. Path. 22, 29.Google Scholar
Kraus, R. (1903). Ueber ein akut wirkendes Bakterientoxin. Zbl. Bakt. (1. Abt. Orig.), 34, 488.Google Scholar
Kraus, R. & Doerr, R. (1905). Die experimentelle Grundlage einer antitoxischen Therapie der bazillären Dysenterie. Z. Hyg. InfektKr. 55, 1.CrossRefGoogle Scholar
Kraus, R. & Pribram, E. (1905). Ueber Choleravibrionen und andere pathogene Vibrionen. Ueber die Beziehung der Vibrionen El Tor zu dem Choleravibrio. Zbl. Bakt. (1. Abt. Orig.), 41, 15, 155.Google Scholar
Kraus, R. & Schwoner, J. (1908). Ueber Beziehungen des Antitoxingehaltes des Diphtherieserums zu dessen Heilwert. Ueber Avidität der Antitoxine. Zbl. Bakt. (1. Abt. Orig.), 47, 124.Google Scholar
Levine, L. (1952). The antitoxic activity and gamma globulin distribution in fractionated diphtheria and tetanus antitoxin of equine origin. Brit. J. exp. Path. 32, 190.Google Scholar
Madsen, T. & Schmidt, S. (1930). Die Reaktionsgesch windigkeit zwischen Diphtherietoxin und Antitoxin und ihre Bedeutung für die Heilkraft des antidiphtherischen Serums. Z. ImmunForsch. 65, 357.Google Scholar
Moloney, P. J. & Hennessy, J. N. (1944). Titration of tetanal toxins and toxoids by flocculation. J. Immunol. 48, 345.CrossRefGoogle Scholar
O'brien, R. A. & Glenny, A. T. (1931). Production of Antitoxin for Therapeutic Purposes. A System of Bacteriology, 3, 353. London: H.M. Stationery Office.Google Scholar
Petrie, G. F. (19421944). Observations on the variable interactions of tetanus toxins and antitoxins. Bull. Hlth Org. L. o. N. 10, 113.Google Scholar
Philpot, J. ST L. (1938). Direct photography of ultracentrifuge sedimentation curves. Nature, Lond., 141, 283.CrossRefGoogle Scholar
Ramon, G. (1922). Floculation dans un mélange neutre de toxine-antitoxine diphthériques. C.R. Soc. Biol., Paris, 86, 661.Google Scholar
Report, onthe, Meeting ofSerologists, ofthe, Permanent & Commission, on Biological Standardisation. (1938). Bull. Hlth Org. L. o. N. 7, 683.Google Scholar
Scholz, W. (1924). Nachweis und Austitrierung antitoxischer Sera (insbesondere des Tetanus Antitoxins) im Reagenzglas. Zbl. Bakt. (1. Abt. Orig.), 92, 434.Google Scholar
Smith, E. L. & Gerlough, T. D. (1947). The isolation and properties of the proteins associated with tetanus antitoxic activity in equine plasma. J. biol. Chem. 167, 679.CrossRefGoogle ScholarPubMed
Smith, M. Llewellyn (1938). The standardisation of tetanus antitoxin: factors influencing the assay. Bull. Hlth Org. L. o. N. 7, 739.Google Scholar
Svedberg, T. & Pedersen, K. O. (1940). The Ultracentrifuge. Oxford: Clarendon Press.Google Scholar
Tiselius, A. (1937). CLXXXII. Electrophoresis of serum globulin. II. Electrophoretic analysis of normal and immune sera. Biochem. J. 31, 1464.CrossRefGoogle Scholar
Topley, & Wilson's, Principles of Bacteriology and Immunity (1946), Revised by Wilson, G. S. & Miles, A. A., 3rd edition. London: Edward Arnold and Co.CrossRefGoogle Scholar
Van Der Scheer, J.,Wyckoff, R. W. G. & Clarke, F. H. (1941). The electrophoretic analysis of tetanal antitoxic horse-sera. J. Immunol. 40, 173.CrossRefGoogle Scholar