Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:43:32.910Z Has data issue: false hasContentIssue false

Complement Action in regard to Surface Tension

Published online by Cambridge University Press:  15 May 2009

Hans Schmidt
Affiliation:
(From the Bacteriological Department, Lister Institute, London.)
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years immunity reactions have come to be regarded more particularly from the physico-chemical standpoint. Many of the phenomena occurring in immunity reactions are shown to be of the nature of colloidal chemical processes, and the laws which govern such processes have been found to hold, at least partially, for reactions occurring in sera, which belong to the class of colloidal protein solutions. Thus the application to immunity reactions, of such conceptions as viscosity and surface tension, has afforded a more reasonable explanation of these reactions. In the following paper special reference will be made to the surface tension, changes of which play an important part in all immunity reactions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1913

References

REFERENCES

Bertolini, A. (1911). Folia clin. Chim. е Microscop. III. 351; ref. Zeitschr. F. Immunitätsf. 1911, 1151.Google Scholar
Freundlich, H. (1909). Kapillarchemie.Google Scholar
Friedberger, and Salecker, P. (1911). Zeitschr. f. Immunitätsf. XI. 587.Google Scholar
Hara, K.K. (1913). Zeitschr. F. Immunitätsf. XVII. 209.Google Scholar
Husler, J. (1912).Zeitschr. F. Immunitätsf. XV. 157.Google Scholar
Iscovesco, (1911a). Compt. rend. Soc. Biol. LXX. Nos. 3, 10.Google Scholar
Iscovesco, (1911b). Compt. rend. Soc. Biol. LXX. No. 1.Google Scholar
Jakoby, and Schuetze, (1910). Zeitschr. f. Immunitätsf. IV. 730.Google Scholar
Landsteiner, and Stankovic, (1906). Centralbl. f. Bakt. XLI. 108.Google Scholar
Metcalf, (1905). Zeitschr. f. physikal. Chem. LII. 1.Google Scholar
Mutermilch, (1913). Ann. Inst. Past. 83.Google Scholar
Noguchi, and Bronfenbrenner, (1911). Journ. Exper. Med. XIII. 229.CrossRefGoogle Scholar
Ramsden, (1894). Arch. F. Anat. u. Physiol. Abt. F. Physiol. 517.Google Scholar
Ramsden, (1903). Proc. Roy. Soc. LXXII. 156.Google Scholar
Ramsden, (1904). Zeitschr. F. Physikal. Chem. XLVII. 336.CrossRefGoogle Scholar
Sachs, (1913). Handbuch der pathogenen Microorganismen, II. 871.Google Scholar
Schmidt, H. (1913). Journ, Hygiene.Google Scholar
Schmidt, P. (1911). Zeitschr. f. Hyg. LXIX. 513.CrossRefGoogle Scholar
Schmidt, P. (1912). Zeotschr. f. Chem. Industr. Kolloid. X. 3, XI. 5.CrossRefGoogle Scholar
Mario, Segale (1911). Instit. di Patolog. generale R. Universitá Genova. Patol. An. I. 709; ref. Zeitschr. f. Immunitätsf. 1911, 385.Google Scholar
Ito, Tetsuda (1912). Zeitschr. f. Immunitätsf. XV. 97.Google Scholar
Traube, J. (1904). Pfliiger's Arch. f. Physiol. CXV. 541.CrossRefGoogle Scholar
Traube, J. (1904). Grundriss der physikal. Chem. Encke Stuttgart1, 146.Google Scholar
Traube, J. (1908). Biochem. Zeitschr. 374.Google Scholar