Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:46:57.695Z Has data issue: false hasContentIssue false

Characterisation of haemolytic activity from Aeromonas caviae

Published online by Cambridge University Press:  15 May 2009

T. Karunakaran*
Affiliation:
Madurai Kamaraj University, Madurai
B. G. Devi
Affiliation:
Kuvempu University, B. R. Project, India
*
*Corresponding author and current address: The University of Texas Health Sciences Center. San Antonio. TX 78284–7894, USA.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aeromonas caviae, an enteropathogen associated with gastroenteritis, displays several virulence characteristics. Studies on the kinetics of growth of A. caviae and expression of β–haemolytic toxin revealed that A. caviae produced maximum haemolytic activity extracellularly during the stationary phase. Preliminary studies on the properties of A. caviae haemolysin suggested that divalent cations (Mg2+ and Ca2+) and thiol compounds, dithiothreitol and mercaptoethanol enhanced the haemolytic activity. Addition of L–cysteine, glutathione and EDTA reduced the haemolytic activity. The iron chelator, 2–2' bipyridyl, significantly inhibited the growth of A. caviae possibly by iron limitation, with parallel enhancement of haemolysin production compared to A. caviae grown in excess of iron. These results suggest that A. caviae produces only β-haemolysin, which resembles the haemolysins reported for several other bacteria and the activity might be regulated by environmental factors especially iron.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

REFERENCES

Altwegg, M, Geiss, HK. Aeromonas as a human pathogen. CRC Crit Rev Microbiol 1989; 6: 253–86.CrossRefGoogle Scholar
Brenden, R, Janda, JM. Detection, quantitation and stability of the β–haemolysin of Aeromonas spp. J Med Microbiol 1987; 24: 247–51.CrossRefGoogle ScholarPubMed
Janda, JM, Brenden, R. Importance of Aeromonas sorbia in Aeromonas bacteremia. J Infect Dis 1987; 155: 589–91.CrossRefGoogle Scholar
Namdari, H, Bottone, EJ. Microscopic and clinical evidence supporting the role of Aeromonas caviae as an enteropathogen. J Clin Microbiol 1990; 28: 837–40.CrossRefGoogle Scholar
Singh, DV, Sanyal, SC. Production of haemolysis and its correlation with enterotoxicity in Aeromonas spp. J Med Microbiol 1992; 37: 262–7.CrossRefGoogle ScholarPubMed
Singh, DV, Sanyal, SC. Enterotoxicity of clinical and environmental species of Aeromonas spp. J Med Microbiol 1992; 36: 269–72.CrossRefGoogle ScholarPubMed
Altwegg, M. Aeromonas caviae: an enteric pathogen. Infection 1985; 13: 228–30.CrossRefGoogle ScholarPubMed
Challapalli, M, Tess, BR, Cunningham, DC, Chopra, AK, Houston, CW. Aeromonas–associated diarrhorea in children. Pediatr Infect Dis J 1988; 7: 693–8.CrossRefGoogle Scholar
Joaquin, VHS, Pickett, DA. Aeromonas–associated gastroenteritis in children. Pediatr Infect Dis J 1988; 7: 53–7.CrossRefGoogle Scholar
Millership, SE, Barber, MR, Tabaqchali, P. Toxin production by Aeromonas spp. from different sources. J Med Microbiol 1986; 22: 311–14.CrossRefGoogle ScholarPubMed
Janda, JM. Biochemical and exoenzymatic properties of Aeromonas species. Diagn Microbiol Infect Dis 1985; 3: 223–32.CrossRefGoogle ScholarPubMed
Leung, KY, Stevenson, RMW. Characteristics and distribution of extracellular proteases from Aeromonas hydrophila. J Gen Microbiol 1988; 134: 151–60.Google Scholar
Namdari, H, Bottone, EJ. Cytotoxin and enterotoxin production as factors delineating enteropathogenicity of Aeromonas caviae. J Clin Microbiol 1990; 28: 1796–8.CrossRefGoogle ScholarPubMed
Namdari, H, Bottone, EJ. Aeromonas caviae: ecologic adaptation in the intestinal tract of infants coupled to adherence and enterotoxin production as factors in enterpathogenicity. Experientia 1991; 47: 434–6.Google Scholar
Potomski, J, Burke, V, Robinson, J, Fumarola, D, Miragliotta, G. Aeromonas cytotoxic enterotoxin cross reactive with cholera toxin. J Med Microbiol 1987; 23: 179–86.CrossRefGoogle ScholarPubMed
Carrello, A, Silburn, KA, Budden, JR, Chang, BJ. Adhesion of clinical and environmental Aeromonas isolates to HEp–2 cells. J Med Microbiol 1988; 26: 1927.CrossRefGoogle ScholarPubMed
Monfort, P, Baleux, B. Haemolysin occurrence among Aeromonas hydrophila, Aeromonas caviae and Aeromonas sorbia isolated from different aquatic ecosystems. Res Microbiol 1991; 142: 95102.CrossRefGoogle Scholar
Singh, DV, Sanyal, SC. Haemagglutinating activity, serum sensitivity and enterotoxicity of Aeromonas spp. J Med Microbiol 1993; 38: 4953.CrossRefGoogle Scholar
Stewart, GA, Bundell, CS, Burke, V. Partial purification of a soluble haemagglutinin from human diarrhoeal isolates of Aeromonas. J Med Microbiol 1986; 21: 319–23.CrossRefGoogle ScholarPubMed
Karunakaran, T, Gunasekaran, P. Characterization of Zymomonas mobilis alkaline phosphatase activity in Escherichia coli. Curr Microbiol 1992; 25: 41–5.CrossRefGoogle ScholarPubMed
Stelma, GN Jr, Johnson, CH, Spaulding, P. Evidence for the direct involvement of β–hemolysin in Aeromonas hydrophila enteropathogenicity. Curr Microbiol 1986; 14: 71–7.CrossRefGoogle Scholar
Gosling, PJ, Turnball, PCB, Lightfoot, NF, Pether, JVS, Lewis, RJ. Isolation and purification of Aeromonas sorbia cytotonic enterotoxin and β-hemolysin. J Med Microbiol 1993; 38: 227–34.CrossRefGoogle Scholar
Bernheimer, A, Avigad, LS. Partial purification of aerolysin, a lytic exotoxin from Aeromonas hydrophila. Infect Immun 1974; 9: 1016–21.CrossRefGoogle ScholarPubMed
Nomura, S, Fujino, M, Yamakawa, M, Kawahara, E. Purification and characterization of salmolysin, an extracellular hemolytic toxin from Aeromonas salmonicida. J Bacteriol 1988; 170: 3694–702.CrossRefGoogle ScholarPubMed
Chu, L, Bramanti, T, Ebersole, J, Holt, SC. Hemolytic activity in the periodontopathogen Porphyromonas gingivalis: kinetics of enzyme release and localization. Infect Immun 1991; 59: 1932–40.CrossRefGoogle ScholarPubMed
Koronakis, V. The secreted hemolysins of Proteus mirabilis. Proteus vulgaris, and Morganella morganii are genetically related to each other and to the alpha–hemolysin of Escherichia coli. J Bacteriol 1987; 169: 1509–15.CrossRefGoogle Scholar
Redfearn, MS. Toxic lysolipoid: isolation from Pseudomonas pseudomallei. Science 1964; 14: 648–9.CrossRefGoogle Scholar
Titball, RW, Munn, CB. Role of caseinase from Aeromonas salmonicida in activation of hemolysin. Infect Immun 1985; 49: 756–9.CrossRefGoogle ScholarPubMed
Buckley, JT, Halasa, LN, Lund, KD, MacIntyre, S. Purification and some properties of the hemolytic toxin aerolysin. Can J Biochem 1981; 59: 430–5.CrossRefGoogle ScholarPubMed