Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T16:50:58.691Z Has data issue: false hasContentIssue false

Using spatial simulations of habitat modification for adaptive management of protected areas: Mediterranean grassland modification by woody plant encroachment

Published online by Cambridge University Press:  15 November 2013

PAOLA MAIROTA*
Affiliation:
DISAAT, University of Bari, ‘Aldo Moro’ via Orabona 4, I-70126 Bari, Italy
VINCENZO LERONNI
Affiliation:
DISAAT, University of Bari, ‘Aldo Moro’ via Orabona 4, I-70126 Bari, Italy
WEIMIN XI
Affiliation:
Department of Forest and Wildlife Ecology, University of Wisconsin at Madison, 1630 Linden Drive, Madison, Wisconsin 53706, USA Department of Biological and Health Sciences, Texas A&M University, Kingsville, Texas, 78363, USA
DAVID J. MLADENOFF
Affiliation:
Department of Forest and Wildlife Ecology, University of Wisconsin at Madison, 1630 Linden Drive, Madison, Wisconsin 53706, USA
HARINI NAGENDRA
Affiliation:
Ashoka Trust for Research in Ecology and the Environment, Royal Enclave, Srirampura, Jakkur Post, Bangalore 560064, India
*
*Correspondence: Dr Paola Mairota e-mail: [email protected]

Summary

Spatial simulation may be used to model the potential effects of current biodiversity approaches on future habitat modification under differing climate change scenarios. To illustrate the approach, spatial simulation models, including landscape-level forest dynamics, were developed for a semi-natural grassland of conservation concern in a southern Italian protected area, which was exposed to woody vegetation encroachment. A forest landscape dynamics simulator (LANDIS-II) under conditions of climate change, current fire and alternative management regimes was used to develop scenario maps. Landscape pattern metrics provided data on fragmentation and habitat quality degradation, and quantified the spatial spread of different tree species within grassland habitats. The models indicated that approximately one-third of the grassland area would be impacted by loss, fragmentation and degradation in the next 150 years. Differing forest management regimes appear to influence the type of encroaching species and the density of encroaching vegetation. Habitat modifications are likely to affect species distribution and interactions, as well as local ecosystem functioning, leading to changes in estimated conservation value. A site-scale conservation strategy based on feasible integrated fire and forest management options is proposed, considering the debate on the effectiveness of protected areas for the conservation of ecosystem services in a changing climate. This needs to be tested through further modelling and scenario analysis, which would benefit from the enhancement of current modelling capabilities of LANDIS-II and from combination with remote sensing technologies, to provide early signals of environmental shifts both within and outside protected areas.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aber, J.D. & Federer, C.A. (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92: 463474.Google Scholar
Aber, J.D., Ollinger, S.V. & Driscoll, C.T. (1997) Modelling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecological Modelling 101: 6178.CrossRefGoogle Scholar
Acácio, V., Holmgren, M., Rego, F., Moreira, F. & Mohren, G.M.J. (2009) Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems 76: 389400.Google Scholar
Akçakaya, H.R., Burgman, M.A., Kindvall, O., Wood, C.C., Sjögren-Gulve, P., Hatfield, J.S. & McCarthy, M.A., eds (2004) Species Conservation and Management. Case Studies. Oxford, UK: Oxford University Press: 533 pp.CrossRefGoogle Scholar
Alberti, G., Leronni, V., Piazzi, M., Petrella, F., Mairota, P., Peressotti, A., Piussi, P., Valentini, R., Gristina, L., La Mantia, T., Novara, T. & Rühl, J. (2011) Impact of woody encroachment on soil organic carbon and nitrogen in abandoned agricultural lands along a rainfall gradient in Italy. Regional Environmental Change 11: 917924.CrossRefGoogle Scholar
Alcaraz-Segura, D., Cabello, J., Paruelo, J.M. & Delibes, M. (2009) Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach. Environmental Management 43: 3848.Google Scholar
Alifragis, D., Smiris, P., Maris, F., Kavvadias, V., Konstantinidou, E. & Stamou, N. (2001) The effect of stand age on the accumulation of nutrients in the aboveground components of an Aleppo pine ecosystem. Forest Ecology and Management 141: 259269.CrossRefGoogle Scholar
Altamirano, A., Field, R., Cayuela, L., Aplin, P., Lara, A. & Rey-Benayas, J.M. (2010) Woody species diversity in temperate Andean forests: the need for new conservation strategies. Biological Conservation 143: 20802091.CrossRefGoogle Scholar
Baker, W.L. (1989) A review of models of landscape change, Landscape Ecology 2: 111133.CrossRefGoogle Scholar
Bakkenes, M., Alkemade, J.R.M., Ihle, F., Leemans, R. & Latour, J.B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8: 390407.Google Scholar
Baldocchi, D.D., Hicks, B.B. & Meyers, T.P. (1988) Measuring biosphere-atmosphere exchange of biologically related gases with micrometeorological methods. Ecology 69: 13311340.CrossRefGoogle Scholar
Boccaccio, L., Labadessa, R., Leronni, V. & Mairota, P. (2013) Cambiamenti del paesaggio del sito Natura 2000 ‘Murgia Alta’ e frammentazione delle praterie aride = Landscape change in the Natura 2000 ‘Murgia Alta’ site and dry grassland fragmentation (English abstract). In: IX Congresso nazionale Biodiversità. Atti del convegno. Vol. 3: Territorio, paesaggio e servizi eco-sistemici, ed. Calabrese, G., Pacucci, C., Occhialini, W. & Russo, G., pp. 351357. Valenzano, Italy: CIHEAM-IAMB [www document]. URL http://www.iamb.it/share/integra_files_lib/files/biodiversita_vol3.pdf Google Scholar
Bradley, B.A. & Mustard, J. (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications 16: 11321147.CrossRefGoogle ScholarPubMed
Browning, D.M., Archer, S.R., Asner, G.P., McClaran, M.P. & Wessman, C.A. (2008) Woody plants in grasslands: post-encroachment stand dynamics. Ecological Applications 18: 928944.CrossRefGoogle ScholarPubMed
Brubaker, L.B. (1981) Long-term forest dynamics. In: Forest Succession. Concepts and Application, ed. West, D.C., Shugart, H.H. & Botkin, D.B., pp. 95106. New York, USA and Heidelberg and Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Bugmann, H. (1994) On the ecology of mountainous forests in a changing climate: a simulation study. PhD thesis no. 10638. Swiss Federal Institute of Technology Zurich, Switzerland: 258 pp.Google Scholar
Chopping, M., Su, L., Rango, A., Martonchik, J.V., Peters, D.P. & Laliberte, A. (2008) Remote sensing of woody shrub cover in desert grasslands using MISR with a geometric-optical canopy reflectance model. Remote Sensing of Environment 112: 1934.CrossRefGoogle Scholar
Christensen, J.H., Rummukainen, M. & Lenderink, G. (2009) Formulation of very-high resolution regional climate model ensembles for Europe. In: 2009 ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project, ed. van der Linden, P. & Mitchell, J.F.B, pp. 4758. Met Office Hadley Centre, UK.Google Scholar
Ciais, C., Soussana, J.F., Vuichard, N., Luyssaert, S., Don, A., Janssens, I.A., Piao, S.L., Dechow, R., Lathière, J., Maignan, F., Wattenbach, M., Smith, P., Ammann, C., Freibauer, A., Schulze, E.D. & the CARBOEUROPE Synthesis Team. (2010) The greenhouse gas balance of European grasslands. Biogeosciences Discuss. 7: 5997–6050 [www document]. URL http://biogeosciences-discuss.net/7/5997/2010/ Google Scholar
Cliquet, A., Backes, C., Harris, J. & Howsam, P. (2009) Adaptation to climate change. Legal challenges for protected areas. Utrecht Law Review 5: 158175.CrossRefGoogle Scholar
Daas, C., Montpied, P., Hanchi, B. & Dreyer, E. (2008) Responses of photosynthesis to high temperatures in oak saplings assessed by chlorophyll-a fluorescence: inter-specific diversity and temperature-induced plasticity. Annals of Forest Science 65: 305.Google Scholar
Davis, M.B. & Shaw, R.G. (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292: 673679.Google Scholar
Dodd, A., Hardiman, A., Jennings, K. & Williams, G. (2010) Protected areas and climate change. Reflections from a practitioner's perspective. Utrecht Law Review 6: 1401148.Google Scholar
EEA (2010) The European environment. State and outlook 2010: biodiversity [www document]. URL http://dx.doi.org/10.2800/6160 Google Scholar
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics 40: 677697.CrossRefGoogle Scholar
Ellenberg, H. (1988) Vegetation Ecology of Central Europe. Cambridge, UK: Cambridge University Press.Google Scholar
European Habitats Directive (2007) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (consolidated version 1.1.2007) [www document]. URL http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.htm Google Scholar
Fabbio, G., Merlo, M. & Tosi, V. (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe-the Mediterranean region. Journal of Environmental Management 67: 6776.CrossRefGoogle ScholarPubMed
Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34: 487515.CrossRefGoogle Scholar
Forbes, B.C. (1999) Land use and climate change on the Yamal Peninsula of north-west Siberia: some ecological and socio-economic implications. Polar Research 18 367373.CrossRefGoogle Scholar
Forman, R.T.T. (1995) Land Mosaics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Forte, L., Perrino, E.V. & Terzi, M.(2005). Le praterie a Stipa austroitalica Martinovsky ssp. austroitalica dell'Alta Murgia (Puglia) e della Murgia Materana (Basilicata). Fitosociologia 42: 83103 (English abstract).Google Scholar
Franklin, J., Syphard, A.D., Mladenoff, D.J., He, H.S., Simons, D.K., Martin, R.P., Deutschman, D. & O'Leary, J.F. (2001) Simulating the effects of different fire regimes on plant functional groups in Southern California. Ecological Modelling 142: 261283.CrossRefGoogle Scholar
Fyllas, N.M., Phillips, O.L., Kunin, W.E., Matsinos, Y.G. & Troumbis, A.Y. (2007) Development and parameterization of a general forest gap dynamics simulator for the north-eastern Mediterranean Basin (GREekFOrestSpecies). Ecological Modelling 204: 439456.Google Scholar
Goodale, C.L., Aber, J.D. & Farrell, E.P. (1998) Predicting the relative sensitivity of forest production in Ireland to site quality and climate change. Climate Research 10: 5167.CrossRefGoogle Scholar
Hamann, A. & Wang, T. (2006) Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87: 27732786.Google Scholar
Hannah, L. (2008) Protected areas and climate change. Annals of the New York Academy of Sciences 1134: 201212.Google Scholar
Hargreaves, G.H. & Samani, Z.A. (1982) Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering 108 (IR3): 223230.Google Scholar
He, H.S. (2008) Forest landscape models: definitions, characterization, and classification. Forest Ecology and Management 254: 484498.Google Scholar
He, H.S. & Mladenoff, D.J. (1999 a) The effects of seed dispersal on the simulation of long-term forest landscape change. Ecosystems 2: 308319.Google Scholar
He, H.S. & Mladenoff, D.J. (1999 b) Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession. Ecology 80: 8190.Google Scholar
He, H.S., Mladenoff, D.J. & Crow, T.R. (1999) Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecological Modelling 114: 213233.Google Scholar
Heller, N.E. & Zavaleta, E.S. (2009) Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142: 1432 CrossRefGoogle Scholar
Hofer, G., Wagner, H.H., Herzog, F. & Edwards, P.J. (2007) Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes. Ecography 31: 131139.Google Scholar
Hudak, A.T. & Wessman, C.A. (1998) Textural analysis of historical aerial photography to characterize woody plant encroachment in South African savanna. Remote Sensing of Environment 66: 317330.CrossRefGoogle Scholar
Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15: 5661.CrossRefGoogle ScholarPubMed
Huntley, B. (1999) Species distribution and environmental change: considerations from the site to the landscape scale. In: Ecosystem Management: Questions for Science and Society, ed. Maltby, E., Holdgate, M., Acreman, M. & Weir, A., pp. 115130. Virginia Water, UK: Royal Holloway Institute for Environmental Research.Google Scholar
Huntley, B., Bartlein, P.J. & Prentice, I.C. (1989) Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography 16: 551560.Google Scholar
Huxman, T.E., Wilcox, B.P., Breshears, D.D., Scott, R.L., Snyder, K.A., Small, E.E., Hultine, K., William, K.H., Pockman, T. & Jackson, R.B. (2005) Ecohydrological implications of woody plant encroachment. Ecology 86: 308319.Google Scholar
IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Jaeger, J.A.G. (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15: 115130.CrossRefGoogle Scholar
Jump, A.S., Cavin, L. & Hunter, P.D. (2010) Monitoring and managing responses to climate change at the retreating range edge of forest trees. Journal of Environmental Monitoring 12: 17911798.Google Scholar
Keeley, J.E., Bond, W.J., Bradstock, R.A., Pausas, J.G. & Rundel, P.W. (2012) Fire in Mediterranean Ecosystems: Ecology, Evolution and Mangement. Cambridge, UK: Cambridge University Press: 515 pp.Google Scholar
La Mantia, T., Gristina, L., Rivaldo, E., Pasta, S., Novara, A. & Rühl, J. (2013) The effects of post-pasture woody plant colonization on soil and aboveground litter carbon and nitrogen along a bioclimatic transect. iForest: e19 [www document]. URL http://www.sisef.it/iforest/contents/?id=ifor0811–006 CrossRefGoogle Scholar
Laurent, J.-M., Bar-Hen, A., Francois, L., Ghislain, M. & Cheddadi, R. (2004) Refining vegetation simulation models: from plant functional types to bioclimatic affinity groups of plants. Journal of Vegetation Science 15: 739746.Google Scholar
Lemieux, C.J. & Scott, D.J. (2005) Climate change, biodiversity conservation and protected area planning in Canada. The Canadian Geographer 49: 384399.Google Scholar
Leronni, V. (2013) Simulating Mediterranean forest landscape dynamics in the context of climate change., PhD thesis, University of Bari, Bari, Italy.Google Scholar
Liu, J., Dietz, T., Carpenter, S.R., Folke, C., Alberti, M., Redman, C.L., Schneider, S.H., Ostrom, E., Pell, A.N., Lubchenco, J., Taylor, W.W., Ouyang, Z., Deadman, P., Kratz, T. & Provencher, W. (2007) Coupled human and natural systems. Ambio 36: 639–449.CrossRefGoogle ScholarPubMed
Lucas, R.M., Bunting, P., Paterson, M. & Chisholm, M. (2008) Classification of Australian forest communities using aerial photography CASI and HyMap Data. Remote Sensing of Environment 112: 20882103.Google Scholar
Mairota, P., Cafarelli, B., Boccaccio, L., Leronni, V., Labadessa, R., Kosmidou, V. & Nagendra, H. (2013) Using landscape structure to develop quantitative baselines for protected area monitoring. Ecological Indicators 33: 8295.Google Scholar
Malmsheimer, R.W., Heffernan, P., Brink, S., Crandall, D., Deneke, F., Galik, C., Gee, E., Helms, J.A., McClure, N., Mortimer, M., Ruddell, S., Smith, M. & Stewart, J. (2008) Potential effects of climate change of forests. Journal of Forestry 106: 129131.Google Scholar
Martinez-Meyer, E. (2005) Climate change and biodiversity, some considerations in forecasting shifts in species potential distributions. Biodiversity Informatics 2: 4255.Google Scholar
McGarigal, K. & McComb, W.C. (1995) Relationships between landscape structure and breeding birds in the Oregon Coast Range. Ecological Monographs 65: 235260.CrossRefGoogle Scholar
McGarigal, K., Cushman, S.A., Neel, M.C. & Ene, E. (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. computer software program produced by the authors at the University of Massachusetts, Amherst, USA [www document]. URL http://www.umass.edu/landeco/research/fragstats/fragstats.html Google Scholar
Mediavilla, S. & Escudero, A. (2003 a) Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. New Phytologist 159: 203211.Google Scholar
Mediavilla, S. & Escudero, A. (2003 b) Relative growth rate of leaf biomass and leaf nitrogen content in several mediterranean woody species. Plant Ecology 168: 321332.Google Scholar
Midgley, G.F., Davies, I.D., Albert, C.H., Alfwegg, R., Hannah, L., Hughes, G.O., O'Halloran, L.R., Seo, C., Thorne, J.H. & Thuiller, W. (2010) BioMove: an integrated platform simulating the dynamic response of species to environmental change. Ecography 33: 612616.Google Scholar
Millar, C.I., Stephenson, N.L. & Stephens, S.L. (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecological Applications 17: 21452151.Google Scholar
Mladenoff, D.J. (2004) LANDIS and forest landscape models. Ecological Modelling 180: 719.Google Scholar
Moleele, N.M., Ringrose, S., Matheson, W. & Vanderpost, C. (2002) More woody plants? The status of bush encroachment in Botswana's grazing areas. Journal of Environmental Management 64: 311.Google Scholar
Muldavin, E.H., Neville, P. & Harper, G. (2001) Indices in grassland biodiversity in the Chihuahuan Desert ecoregion derived from remote sensing. Conservation Biology 15: 844855.Google Scholar
Myers, N., Mittelmeier, R.A., Mittelmeier, C.G., Da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Nagendra, H., Lucas, R.M., Honrado, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M. & Mairota, P. (2013) Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity and threats. Ecological Indicators 33: 4559.CrossRefGoogle Scholar
Niinemets, Ü. & Valladares, F. (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs 76: 521547.Google Scholar
Notarnicola, G. (2012) Fuel models and canopy properties in Aleppo pine plantations in Puglia for crown fire behaviour modelling. PhD thesis, University of Bari, Bari, Italy (English summary).Google Scholar
Panaiotis, C., Carcaillet, C. & M'Hamedi, M. (1997) Determination of the natural mortality age of an holm oak (Quercus ilex L.) stand in Corsica (Mediterranean Island). Acta Oecologica 18: 519530.Google Scholar
Paula, S., Arianoutsou, M., Kazanis, D., Tavsanoglu, Ç., Lloret, F., Buhk, C., Ojeda, F., Luna, B., Moreno, J.M., Rodrigo, A., Espelta, J.M., Palacio, S., Fernández-Santos, B., Fernandes, P. M. & Pausas, J.G. (2009) Fire-related traits for plant species of the Mediterranean Basin. Ecology 90: 1420–1420 data file [www document]. URL http://esapubs.org/archive/ecol/E090/094/default.htm Google Scholar
Pausas, J.G., Llovet, J., Rodrigo, A. & Vallejo, R. (2008) Are wildfires a disaster in the Mediterranean basin? A review. International Journal of Wildland Fires 17: 713723.Google Scholar
Pearson, D.M. (2002) The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes. Journal of Environmental Management 64: 8595.Google Scholar
Pizzigalli, C., Palatella, L., Zampieri, M., Lionello, P., Miglietta, M.M. & Paradisi, P. (2012) Dynamical and statistical downscaling of precipitation and temperature in a Mediterranean area. Italian Journal of Agronomy 7: 312.CrossRefGoogle Scholar
Querejeta, J.I., Barbera, G., Granados, A. & Castillo, V.M. (2008) Afforestation method affects the isotopic composition of planted Pinus halepensis in a semiarid region of Spain Forest Ecology and Management 254: 5664.Google Scholar
Regione, Puglia (2008) Land cover/land use types Regione Puglia official land cover/land use map, 2008 [www document]. URL http://www.sit.puglia.it/ Google Scholar
Rivas-Martínez, S. (2009) Worldwide Bioclimatic Classification System, 1996–2009 [www document]. URL http://www.globalbioclimatics.org Google Scholar
Roeckner, E., Baeuml, G., Bonventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U. & Tompkins, A. (2003) The atmospheric general circulation model ECHAM5. PART I: Model description, Report 349, Max Planck Institute for Meteorology, Hamburg, Germany.Google Scholar
Rose, N.A. & Burton, P.J. (2009) Using bioclimatic envelopes to identify temporal corridors in support of conservation planning in a changing climate. Forest Ecology and Management 258: 6474.Google Scholar
Scheller, R.M. (2012) LANDIS-II Biomass Succession v3.1 Extension UserGuide [www document]. URL http://www.landis-ii.org/exts/biomass-harvest Google Scholar
Scheller, R.M. & Mladenoff, D.J. (2007) An ecological classification of forest landscape simulation models: tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecology 22: 491505.CrossRefGoogle Scholar
Scheller, R.M. & Domingo, J.B. (2012) LANDIS-II Base Fire v3.0 Extension User Guide [www document]. URL http://www.landis-ii.org/exts/base-fire Google Scholar
Scheller, R.M. & Domingo, J.B. (2013) LANDIS-II Biomass Harvest v2.1 Extension User Guide [www document]. URL http://www.landis-ii.org/exts/biomass-harvest Google Scholar
Seppälä, R., Buck, A. & Katila, P., eds (2009) Adaptation of forests and people to climate change. A global assessment report. IUFRO World Series Volume 22. Helsinki: 224 pp. [www document]. URL www.iufro.org/download/file/4485/4496/Full_Report_pdf/ Google Scholar
Shang, Z., He, H.S., Xi, W., Shifley, S.R. & Palik, B.J. (2012) Integrating LANDIS model and a multi-criteria decision-making approach to evaluate national forest management plan in Missouri Ozarks, USA. Ecological Modelling 229: 50– 63.CrossRefGoogle Scholar
Silang, L., Ronggao, L. & Yang, L. (2010) Spatial and temporal variation of global LAI during 1981–2006. Journal of Geographical Sciences 20: 323332.Google Scholar
Spittlehouse, D.L. (2005). Integrating climate change adaptation into forest management. The Forestry Chronicle 81: 691695.CrossRefGoogle Scholar
Stenseth, N.C., Van Horne, B. & Ims, R.A. (1993) Ecological mechanisms and landscape ecology. Oikos 66: 369380.Google Scholar
Suffling, R. (1995) Can disturbance determine vegetation distribution during climate warming? A boreal test. Journal of Biogeography 22: 501508.Google Scholar
Syphard, A.D., Yang, J., Franklin, J., He, H.S. & Keeley, J.E. (2007) Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands. Environmental Modelling & Software 22: 16411653.Google Scholar
Tapias, R., Climent, J., Pardos, J.A. & Gil, L. (2004) Life histories of Mediterranean pines. Plant Ecology 171: 5368.CrossRefGoogle Scholar
Thompson, J.R., Wiek, A., Swanson, F.J., Carpenter, S.R., Fresco, N., Hollingsworth, T. & Foster, D.R. (2012) Scenario studies as a synthetic and integrative research activity for long-term ecological research. BioScience 62: 367376.Google Scholar
Thornley, J.H.M. (1998) Grassland Dynamics: An Ecosystem Simulation Model. Wallingford, UK and New York, NY, USA: CAB International: 241 pp.CrossRefGoogle Scholar
Tong, C., Wu, J., Yong, S., Yang, J. & Yong, W. (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments 59: 133149.Google Scholar
Tsiouvaras, C.N. (1987) Ecology and management of kermes oak (Quercus coccifera L.) shrublands in Greece: a review. Journal of Range Management 40: 542546.Google Scholar
Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J-M., Hoeg-Guldberg, O. & Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416: 389395.Google Scholar
Weber, G.E., Moloney, K. & Jeltsch, F. (2000) Simulated long-term vegetation response to alternative stocking strategies in savanna rangelands. Plant Ecology 150: 7796.Google Scholar
Weiss, A. & Norman, J.M. (1985) Partitioning solar radiation into direct and diffuse, visible and near-infrared components. Agricultural and Forest Meteorology 34: 205213.Google Scholar
Wiens, J.A., Seavy, N.E. & Jongsomjit, D. (2011) Protected areas in climate space: what will the future bring? Biological Conservation 144: 21192125.Google Scholar
Williams, J.W. & Jackson, S.T. (2007) Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5: 475482.Google Scholar
Wilson, J.B., Peet, R.K., Dengler, J. & Pärtel, M. (2012) Plant species richness: the world records. Journal of Vegetation Science 23: 796802.CrossRefGoogle Scholar
Woodward, F.I & Williams, B.G. (1987) Climate and plant distribution at global and local scales. Vegetatio 69: 189197.Google Scholar
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.J., Veneklaas, E.J. & Villar, R. (2004) The worldwide leaf economics spectrum. Nature 428: 821827.Google Scholar
Xi, W. & Xu, C. (2010) PnET-II for LANDIS-II 5.1 User Guide [www document]. URL http://www.landis-ii.org/users/PnETforLANDIS-IIUserGuide-V1.0.pdf Google Scholar
Xi, W., Coulson, R.N., Birt, A.G., Shang, Z.-B., Waldron, J.D., Charles, W., Lafon, C.W., Cairns, D.M., Tchakerian, M.D. & Klepzig, K.D. (2009) Review of forest landscape models: types, methods, development and applications. Acta Ecologica Sinica 29: 6978.Google Scholar
Xu, C., Gertner, G. Z. & Scheller, R. M. (2009) Uncertainties in the response of a forest landscape to global climate change. Global Change Biology 15: 116131.Google Scholar
Supplementary material: File

Mairota et al. Supplementary Material

Appendix

Download Mairota et al. Supplementary Material(File)
File 4.3 MB
Supplementary material: Image

Mairota et al. Supplementary Material

Figure

Download Mairota et al. Supplementary Material(Image)
Image 2.2 MB
Supplementary material: Image

Mairota et al. Supplementary Material

Figure

Download Mairota et al. Supplementary Material(Image)
Image 2.8 MB
Supplementary material: Image

Mairota et al. Supplementary Material

Figure

Download Mairota et al. Supplementary Material(Image)
Image 233.7 KB
Supplementary material: Image

Mairota et al. Supplementary Material

Figure

Download Mairota et al. Supplementary Material(Image)
Image 1.1 MB
Supplementary material: Image

Mairota et al. Supplementary Material

Figure

Download Mairota et al. Supplementary Material(Image)
Image 1.6 MB