Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T00:46:15.209Z Has data issue: false hasContentIssue false

Targeting clams: insights into the invasive potential and current and future distribution of Asian clams

Published online by Cambridge University Press:  02 April 2018

PAOLA REYNA*
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina Instituto de Diversidad y Ecología Animal (IDEA) CONICET. Av. Vélez Sarsfield 299, CP5000, Córdoba, Argentina
JAVIER NORI
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina Instituto de Diversidad y Ecología Animal (IDEA) CONICET. Av. Vélez Sarsfield 299, CP5000, Córdoba, Argentina Centro de Zoología Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Rondeau 798, (5000A) Córdoba, Argentina
MARÍA L. BALLESTEROS
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina Instituto de Diversidad y Ecología Animal (IDEA) CONICET. Av. Vélez Sarsfield 299, CP5000, Córdoba, Argentina
ANDREA C. HUED
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina Instituto de Diversidad y Ecología Animal (IDEA) CONICET. Av. Vélez Sarsfield 299, CP5000, Córdoba, Argentina
MARCOS TATIÁN
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina Instituto de Diversidad y Ecología Animal (IDEA) CONICET. Av. Vélez Sarsfield 299, CP5000, Córdoba, Argentina
*
*Correspondence: Paola Reyna Email: [email protected]

Summary

Bivalves are among the main groups of invasive freshwater species, with the Asian clam genus Corbicula in particular being widely distributed. While global studies have focused on Corbicula fluminea (Müller, 1774), the invasive potential of Corbicula largillierti (Philippi, 1844) and Corbicula fluminalis (Müller, 1774) is still unknown. The spread of invasive species may be intensified by climate change. We estimated and compared environmentally suitable areas for these species under hypothetical climate scenarios, generating global maps of invasion risk. We found large climatically suitable areas for C. largillierti and C. fluminalis (under species distribution models) and that their invasive potential is currently underestimated. The analysis revealed many areas in which changing climate may favour the invasion of Corbicula spp.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at http://dx.doi.org/10.1017/S0376892918000139

References

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B. & Anderson, R.P. (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541545.Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.Google Scholar
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 4247.Google Scholar
Araujo, R., Moreno, D. & Ramos, M. (1993) The Asiatic clam Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe. American Malacological Bulletin 10: 3949.Google Scholar
Azevêdo, E.D.L., Barbosa, J.E.D.L., Vidigal, T.H.D.A., Marques, J.C., Callisto, M. & Molozzi, J. (2016) Potential ecological distribution of alien mollusk Corbicula largillierti and its relationship with human disturbance in a semi-arid reservoir. Biota Neotropica 16: e0109.Google Scholar
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 18101819.Google Scholar
Beaumont, L.J., Gallagher, R.V., Thuiller, W., Downey, P.O., Leishma, M.R. & Hughes, L. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions 15: 409420.Google Scholar
Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M. & Courchamp, F. (2013) Will climate change promote future invasions? Global Change Biology 19: 37403748.Google Scholar
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481497.Google Scholar
Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701709.Google Scholar
Callil, C.T. & Mansur, M.C.D. (2002) Corbiculidae in the Pantanal: history of invasion in southeast and central South America and biometrical data. Amazoniana 17: 153167.Google Scholar
Ciutti, F. & Cappelletti, C. (2009) First record of Corbicula fluminalis (Müller, 1774) in Lake Garda (Italy), living in sympatry with Corbicula fluminea (Müller, 1774). Journal of Limnology 68: 162.Google Scholar
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N. & Guisan, A. (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774787.Google Scholar
Crespo, D., Dolbeth, M., Leston, S., Sousa, R. & Pardal, MÂ. (2015) Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biological Invasions 17: 20872101.Google Scholar
Darrigran, G. (2002) Potential impact of filter-feeding invaders on temperate inland freshwater environments. Biological Invasions: 145156.Google Scholar
Darrigran, G. (1991) Competencia entre dos especies de pelecipodos invasores, Corbicula fluminea (Müller, 1774) y C. largillierti (Phillipi, 1844). En el litoral argentino del estuario del Rio de La Plata. Biología Acuática 15: 214215.Google Scholar
Diniz-Filho, J.A.F., Bini, M.L., Rangel, F.T., Loyola, R.D., Hof, C., Nogués-Bravo, D. & Araújo, M.B. (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897906.Google Scholar
ESRI (2010) ArcMap GIS, ver. 10. Redlands, CA, USA: Environmental Systems Research Institute.Google Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/ absence models. Environmental Conservation 24: 3849.Google Scholar
Gallardo, B. & Aldridge, D.C. (2013) Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation 160: 225233.Google Scholar
Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. (2016) Predicting global habitat suitability for Corbicula fluminea using species distribution models: the importance of different environmental datasets. Ecological Modelling 319: 163169.Google Scholar
Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P.M. (2017) Ensemble forecasting of Corbicula fluminea worldwide distribution: projections of the impact of climate change. Aquatic Conservation: Marine and Freshwater Ecosystems 27: 675684.Google Scholar
GBIF.org (2017) Global Biodiversity Information Facility. URL www.gbif.orgGoogle Scholar
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. (2014) Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29: 260269.Google Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.Google Scholar
Haesloop, U. (1922) Establishment of the Asiatic clam Corbicula cf. fluminalis in the tidal Weser River (N. Germany). Archiv für Hydrobiologie 126: 175180.Google Scholar
Hellmann, J.J., Byers, J.E., Bierwagen, B.G. & Dukes, J.S. (2008) Five potential consequences of climate change for invasive species. Conservation Biology 22: 534543.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
IPCC (2014) Fifth Assessment Report of the Intergovernmental Panel on Climate Change. URL www.tandfonline.com/doi/abs/10.4155/cmt.13.80Google Scholar
Ituarte, C.F. (1981) Primera noticia acerca de la introducción de Pelecípodos Asiáticos en el área Rioplatense. Neotropica 27: 7982.Google Scholar
Ituarte, C.F. (1994) Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Paraná, Uruguay, and Rio de La Plata Basins. The Nautilus 7: 129135.Google Scholar
Jackson, M.C. (2015) Interactions among multiple invasive animals. Ecology 96: 20352041.Google Scholar
Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecologica 31: 361369.Google Scholar
Karatayev, A.Y., Padilla, D.K., Minchin, D., Boltovskoy, D. & Burlakova, L.E. (2007) Changes in global economies and trade: the potential spread of exotic freshwater bivalves. Biological Invasions 9: 161180.Google Scholar
Kernan, M. (2015) Climate change and the impact of invasive species on aquatic ecosystems. Aquatic Ecosystem Health & Management 18: 321333.Google Scholar
Korniushin, A.V. (2004) A revision of some Asian and African freshwater clams assigned to Corbicula fluminalis (Müller, 1774) (Mollusca: Bivalvia: Corbiculidae), with a review of anatomical characters and reproductive features based on museum collections. Hydrobiologia 529: 251270.Google Scholar
Lee, T., Siripattrawan, S., Ituarte, F. & Diarmaid, O.F. (2005) Invasion of the clonal clams: Corbicula lineages in the New World. American Malacological Bulletin 20: 113122.Google Scholar
Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145151.Google Scholar
Lucy, F., Karatayev, A. & Burlakova, L. (2012) Predictions for the spread, population density, and impacts of Corbicula fluminea in Ireland. Aquatic Invasions 7: 465474.Google Scholar
Mansur, M.C.D. & Pereira, D. (2006) Bivalves límnicos da bacia do rio dos Sinos, Rio Grande do Sul, Brasil (Bivalvia, Unionoida, Veneroida e Mytiloida). Revista Brasileira de Zoologia 23: 11231147.Google Scholar
Marescaux, J., Pigneur, L.M. & Van Doninck, K. (2010) New records of Corbicula clams in French rivers. Aquatic Invasions 5: 3539.Google Scholar
Martins, D.S., Veitenheimer-Mendes, I.L. & Faccioni-Heuser, M.C. (2006) Aspectos morfológicos e de incubação em três espécies de Corbicula Mühlfeld, no lago Guaíba, Rio Grande do Sul, Brasil (Bivalvia, Corbiculidae). Biota Neotropica 6: 111.Google Scholar
Martins, S., Veitenheimer-mendes, I.L. & Faccioni-heuser, M.C. (2004) Corbicula (Bivalvia, Corbiculidae) em simpatria no Lago Guaíba, Rio Grande do Sul, Brasil. Biociências (Porto Alegre) 12: 129138.Google Scholar
McDowell, W.G., Benson, A.J. & Byers, J.E. (2014) Climate controls the distribution of a widespread invasive species: implications for future range expansion. Freshwater Biology 59: 847857.Google Scholar
McDowell, W.G., McDowell, W.H. & Byers, J.E. (2017) Mass mortality of a dominant invasive species in response to an extreme climate event: implications for ecosystem function. Limnology and Oceanography 62: 177188.Google Scholar
McMahon, R.F. (2002) Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59: 12351244.Google Scholar
Nori, J., Akmentins, M.S., Ghirardi, R., Frutos, N. & Leynaud, G.C. (2011) American bullfrog invasion in Argentina: where should we take urgent measures? Biodiversity and Conservation 20: 11251132.Google Scholar
Peterson, T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. & Araújo, M.B. (2011) Ecological Niches and Geographic Distributions (MPB-49). Princeton, NJ, USA: Princeton University Press.Google Scholar
Pigneur, L.M., Marescaux, J., Roland, K., Etoundi, E., Descy, J.P. & Van Doninck, K. (2011) Phylogeny and androgenesis in the invasive Corbicula clams (Bivalvia, Corbiculidae) in Western Europe. BMC Evolutionary Biology 11: 147.Google Scholar
Poff, N.L., Brinson, M.M. & Day, J.W. (2002) Aquatic Ecosystems: Effects of Solar Ultraviolet Radiation and Interactions with Other Climatic Change Factors. Arlington, VA, USA: Pew Center on Global Climate Change.Google Scholar
Pyke, C.R., Thomas, R., Porter, R.D., Hellmann, J.J., Dukes, J.S., Lodge, D.M. & Chavarria, G. (2008) Current practices and future opportunities for policy on climate change and invasive species. Conservation Biology 22: 585592.Google Scholar
Development Core Team, R. (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria: The R Foundation for Statistical Computing.Google Scholar
Rangel, T.F. & Loyola, R.D. (2012) Labeling ecological niche models. Natureza & Conservação 10: 119126.Google Scholar
Reyna, P.B., Morán, A.G. & Tatián, M. (2013) Taxonomy, distribution and population structure of invasive Corbiculidae (Mollusca, Bivalvia) in the Suquía River basin, Córdoba, Argentina. Iheringia, Série Zoologia 103: 7784.Google Scholar
Rosa, I.C., Pereira, J.L., Gomes, J., Saraiva, P.M., Gonçalves, F. & Costa, R. (2011) The Asian clam Corbicula fluminea in the European freshwater-dependent industry: a latent threat or a friendly enemy? Ecological Economics 70: 18051813.Google Scholar
Schoener, T.W. (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49: 704726.Google Scholar
Sorte, C.JB., Ibáñez, I., Blumenthal, D.M., Molinari, N.A., Miller, L., Grosholz, E.D., Diez, J.M., D'Antonio, C.M., Olden, J.D., Jones, S.J. & Dukes, J.S. (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters 16: 261270.Google Scholar
Sousa, R., Antunes, C. & Guilhermino, L. (2006) Factors influencing the occurrence and distribution of Corbicula fluminea (Müller, 1774) in the River Lima estuary. Annales de Limnologie – International Journal of Limnology 42: 165171.Google Scholar
Sousa, R., Antunes, C. & Guilhermino, L. (2008a) Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie – International Journal of Limnology 44: 8594.Google Scholar
Sousa, R., Freire, R., Rufino, M., Méndez, J., Gaspar, M., Antunes, C. & Guilhermino, L. (2007) Genetic and shell morphological variability of the invasive bivalve Corbicula fluminea (Müller, 1774) in two Portuguese estuaries. Estuarine, Coastal and Shelf Science 74: 166174.Google Scholar
Sousa, R., Novais, A., Costa, R. & Strayer, D.L. (2014) Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia 735: 233251.Google Scholar
Sousa, R., Rufino, M., Gaspar, M., Antunes, C. & Guilhermino, L. (2008b) Abiotic impacts on spatial and temporal distribution of Corbicula fluminea (Müller, 1774) in the River Minho Estuary, Portugal. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 98110.Google Scholar
Thuiller, W. (2003) BIOMOD: optimising predictions of species distributions and projecting potential future shift under global change. Global Change Biology 9: 13531362.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araüjo, M.B. (2009) BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32: 369373.Google Scholar
Tiemann, J. (2014) Freshwater Mollusks of the Middle Mississippi River. Illinois Natural History Survey. URL www.ideals.illinois.edu/handle/2142/47061Google Scholar
Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D. & Hulme, P.E. (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment 8: 135144.Google Scholar
Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 28682883.Google Scholar
Weitere, M., Vohmann, A., Schulz, N., Linn, C., Dietrich, D. & Arndt, H. (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea. Global Change Biology 15: 28382851.Google Scholar
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Jonathan Davies, T., Grytnes, J.A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M. & Stephens, P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13: 13101324.Google Scholar
Williams, J.W., Jackson, S.T. & Kutzbach, J.E. (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proceedings of the National Academy of Sciences of the United States of America 104: 57385742.Google Scholar
Supplementary material: File

Reyna et al. supplementary material

Reyna et al. supplementary material 1

Download Reyna et al. supplementary material(File)
File 16.2 KB
Supplementary material: Image

Reyna et al. supplementary material

Reyna et al. supplementary material 2

Download Reyna et al. supplementary material(Image)
Image 2.8 MB
Supplementary material: File

Reyna et al. supplementary material

Reyna et al. supplementary material 3

Download Reyna et al. supplementary material(File)
File 126.8 KB