Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T06:53:20.191Z Has data issue: false hasContentIssue false

Spatial modelling of biodiversity conservation priorities in Portugal’s Montado ecosystem using Marxan with Zones

Published online by Cambridge University Press:  13 August 2019

Rute Pinto*
Affiliation:
Ecohydrology Research Group, Department of Earth and Environmental Sciences, University of Waterloo, Ontario, Canada Center for Environmental and Sustainability Research (CENSE), NOVA School of Science and Technology, NOVA University Lisbon, Portugal
Paula Antunes
Affiliation:
Center for Environmental and Sustainability Research (CENSE), NOVA School of Science and Technology, NOVA University Lisbon, Portugal
Stefan Blumentrath
Affiliation:
Norwegian Institute for Nature Research (NINA), Gaustadalléen 21, N-0349 Oslo, Norway
Roy Brouwer
Affiliation:
Department of Economics and the Water Institute, University of Waterloo, Ontario, Canada
Pedro Clemente
Affiliation:
Center for Environmental and Sustainability Research (CENSE), NOVA School of Science and Technology, NOVA University Lisbon, Portugal
Rui Santos
Affiliation:
Center for Environmental and Sustainability Research (CENSE), NOVA School of Science and Technology, NOVA University Lisbon, Portugal
*
Author for correspondence: Dr Rute Pinto, Email: [email protected]

Summary

Spatial models are increasingly being used to target the most suitable areas for biodiversity conservation. This study investigates how the spatial tool Marxan with Zones (MARZONE) can be used to support the design of cost-effective biodiversity conservation policy. New in this study is the spatial analysis of the costs and effectiveness of different agro-environmental measures (AEMs) for habitat and biodiversity conservation in the Montado ecosystem in Portugal. A distinction is made between the financial costs paid to participating landowners and farmers for adopting AEMs and the broader economic opportunity costs of the corresponding land-use changes. Habitat and species conservation targets are furthermore defined interactively with the local government agency responsible for the management of protected areas, while the costs of agro-forestry activities and alternative land uses are estimated in direct consultation with local landowners. MARZONE identifies the spatial distribution of priority areas for conservation and the associated costs, some of which overlap with existing protected areas. These results provide useful insights into the trade-offs between nature conservation and the opportunity costs of protecting ecologically vulnerable areas, helping to improve current and future conservation policy design.

Type
Research Paper
Copyright
© Foundation for Environmental Conservation 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acácio, V, Holmgren, M, Moreira, F, Mohren, GMJ (2010) Oak persistence in Mediterranean landscapes: the combined role of management, topography, and wildfires. Ecology and Society 15(4): 40.CrossRefGoogle Scholar
Baelde, P (2005) Interactions between the implementation of marine protected areas and right-based fisheries management in Australia. Fisheries Management and Ecology 12: 918.CrossRefGoogle Scholar
Ball, IR, Possingham, HP (2000) MARXAN (V1.8.2): Marine Reserve Design Using Spatially Explicit Annealing [www document]. URL http://courses.washington.edu/cfr590/software/Marxan1810/marxan_manual_1_8_2.pdf Google Scholar
Ball, IR, Possingham, HP, Watts, ME (2009) Marxan and relatives: software for spatial conservation prioritization. In: Spatial Conservation Prioritization: Quantitative Methods and Computational Tools , eds. Moilanen, A, Wilson, KA, Possingham, H, pp. 145156. Oxford, UK: Oxford University Press.Google Scholar
Bastian, O (2013). The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecological Indicators 24: 1222.CrossRefGoogle Scholar
Bugalho, MN, Caldeira, MC, Pereira, JS, Aronson, J, Pausas, JG (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9: 278286.CrossRefGoogle Scholar
Butchart, SHM, Walpole, M, Collen, B, van Strien, A, Scharlemann, JPW, Almond, REA, Baillie, JEM et al. (2010) Global biodiversity: indicators of recent declines. Science 328: 11641168.CrossRefGoogle ScholarPubMed
Cabral, MJ, Queiroz, AI, Trigo, MI, Bettencourt, MJ, Ceia, H, Faria, B, Farrobo, A et al. (2008) Relatório Nacional de Implementação da Diretiva Habitats (2001–2006). Lisbon, Portugal: ICNB, Secretaria Regional do Ambiente e do Mar do Governo Regional dos Açores e Secretaria Regional do Ambiente e Recursos Naturais do Governo Regional da Madeira.Google Scholar
CEAI (Centro de Estudos da Avifauna Ibérica) (2011) Relatório Técnico Final do Projecto LIFE Natureza-Conservação das Populações Arborícolas de Águia de Bonelli em Portugal (LIFE06NAT/P/000194). Evora, Portugal: Centro de Estudos da Avifauna Ibérica.Google Scholar
European Commission (2005) Agri-Environment Measures Overview on General Principles, Types of Measures, and Application. Burssels, Belgium: European Commission Directorate General for Agriculture and Rural Development, Unit G-4 Evaluation of Measures applied to Agriculture.Google Scholar
Fragoso, R, Marques, C (2007). A competitividade do regadio em Portugal no contexto da Nova Política Agrícola Comum: o caso de uma exploração agrícola no Alentejo. Revista de Economia e Sociologia Rural 45: 4970.CrossRefGoogle Scholar
Fragoso, R, Marques, C, Lucas, MR, Martins, MB, Jorge, R (2011) The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem. Journal of Policy Modeling 33: 311327.CrossRefGoogle Scholar
Fuller, RA, McDonald-Madden, E, Wilson, KA, Carwardine, J, Grantham, HS, Watson, JEM, Klein, CJ et al. (2010) Replacing underperforming protected areas achieves better conservation outcomes. Nature Letters 466: 365.CrossRefGoogle ScholarPubMed
Godinho, S, Guiomar, N, Machado, R, Santos, P, Sa-Sousa, P, Fernandes, JP, Neves, N, Pinto-Correia, T (2016) Assessment of environment, land management, and spatial variables on recent changes in montado land cover in southern Portugal. Agroforestry Systems 90: 177192.CrossRefGoogle Scholar
GPP (Gabinete de Planeamento e Politicas) (2011). Valores de Produção Padrão 2007:Quinquénio [2005–2009] . Lisbon, Portugal: Ministério do Ambiente e Ordenamento do Território.Google Scholar
Gray, CL, Hill, SL, Newbold, T, Hudson, LN, Borger, L, Contu, S, Hoskins, AJ et al. (2016) Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications 28: 12306.CrossRefGoogle Scholar
Hermoso, V, Cattarino, L, Linke, S, Kennard, MJ (2018) Catchment zoning to enhance co‐benefits and minimize trade‐offs between ecosystem services and freshwater biodiversity conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 10041014.CrossRefGoogle Scholar
ICNB (Instituto da Conservação da Natureza e da Biodiversidade) (2008) Atlas das Aves Nidificantes em Portugal (1999–2005) . Lisbon, Portugal: Instituto da Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar. Assírio & Alvim.Google Scholar
IPBES (2018) Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services . Fischer, M., Rounsevell, M., Torre-Marin Rando, A., Mader, A., Church, A., Elbakidze, M., Elias, V. et al. (eds.). Bonn, Germany: IPBES Secretariat.Google Scholar
Kirkpatrick, S, Gelatt, CD, Vecchi, MP (1983) Optimisation by simulated annealing. Science 220: 671680.CrossRefGoogle Scholar
Kukkala, AS, Arponen, A, Maiorano, L, Moilanen, A, Thuiller, W, Toivonen, T, Zupan, L et al. (2016) Matches and mismatches between national and EU-wide priorities: examining the Natura 2000 network in vertebrate species conservation. Biological Conservation 198: 193201.CrossRefGoogle Scholar
Law, EA, Bryan, BA, Meijaard, E, Mallawaarachchi, T, Struebig, MJ, Watts, ME, Wilson, KA (2017) Mixed policies give more options in multifunctional tropical forest landscapes. Journal of Applied Ecology 54: 5160.CrossRefGoogle Scholar
Magalhães, MR, Abreu, MM, Lousã, M, Cortez, N, Conceição, JM, Raichande, S (2007) A Estrutura Ecológica da Paisagem – Conceitos e Delimitação, Escalas Regional e Municipal . Lisbon, Portugal: ISA Press.Google Scholar
Margules, CR, Pressey, RL (2000) Systematic conservation planning. Nature 405: 243253.CrossRefGoogle ScholarPubMed
MEA Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Wetlands and Water Synthesis . Washington, DC, USA: World Resources Institute.Google Scholar
Parker, SR, Truscott, J, Harpur, C, Murphy, SD (2015) Exploring a resilience-based approach to spatial planning in Fathom Five National Marine Park, Lake Huron, Canada, using Marxan with Zones. Natural Areas Journal 35: 452464.CrossRefGoogle Scholar
PBH Guadiana (2001) Plano de Bacia Hidrográfica do Rio Guadiana . Lisbon, Portugal: Ministério do Ambiente e Ordenamento do Território.Google Scholar
Peckett, F (2015) Using Marxan and Marxan with Zones to Support Marine Planning. PhD thesis. University of Plymouth, UK.Google Scholar
Perrings, C, Gadgil, M (2003) Conserving biodiversity: reconciling local and global public benefits. In: Providing Global Public Goods: Managing Globalization , eds. Kaul, I, Conceição, P, Le Goulven, K, Mendoza, RU, pp. 532555. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Pinto-Correia, T, Godinho, S (2013) Changing agriculture-changing landscapes: what is going on in the high valued montado. In: Agriculture in Mediterranean Europe: Between Old and New Paradigms , eds. Ortiz-Miranda, D, Moragues-Faus, A, Arnalte-Alegre, E, pp. 7590. Emerald Group Publishing, Bingley.CrossRefGoogle Scholar
Pinto-Correia, T, Guiomar, N, Ferraz-de-Oliveira, MI, Sales-Baptista, E, Rabaça, J, Godinho, C, Ribeiro, N et al. (2018) Progress in identifying high nature value Montados: impacts of grazing on hardwood rangeland biodiversity. Rangeland Ecology and Management 71: 612625.CrossRefGoogle Scholar
Possingham, HP, Moilanen, A, Wilson, KA (2000). Accounting for habitat dynamics in conservation planning. In: Spatial Conservation Prioritization: Quantitative Methods and Computational Tools , eds. Moilanen, A, Wilson, KA, Possingham, H, pp. 135144. Oxford, UK: Oxford University Press.Google Scholar
Sá-Sousa, P (2014) The Portuguese Montado: conciliating ecological values with human demands within a dynamic agroforestry system. Annals Forest Science 71: 13.CrossRefGoogle Scholar
Santos, R, Ring, I, Antunes, P, Clemente, P (2012) Fiscal transfers for biodiversity conservation: the Portuguese Local Finances Law. Land Use Policy 29: 261273.CrossRefGoogle Scholar
Santos, R, Clemente, P, Brouwer, R, Antunes, P, Pinto, R (2015) Landowner preferences for agri-environmental agreements to conserve the Montado ecosystem in Portugal. Ecological Economics 118: 159167.CrossRefGoogle Scholar
Schaefer, M, Goldman, E, Bartuska, AM, Sutton-Grier, A, Lubchenco, J. (2015) Nature as capital: advancing and incorporating ecosystem services in United States federal policies and programs. Proceedings of the National Academy of Sciences of the United States of America 112: 73837389.CrossRefGoogle ScholarPubMed
Schwartz, MW, Cook, CN, Pressey, RL, Pullin, AS, Runge, MC, Salafsky, N, Sutherland, WJ, Williamson, MA (2017) Decision support frameworks and tools for conservation. Conservation Letters 11: 112.Google Scholar
Silva, JP, Pinto, M (2006) Relatório Final Ação2. Projeto Life Natureza Conservação do Sisão no Alentejo (LIFE02NAT/P/8476): Inventariação dos núcleos do Alentejo . Lisbon, Portugal: Instituto da Conservação da Natureza.Google Scholar
Simonson, WD, Allen, HD, Parham, E, Basto-Santos, E, Hotham, P (2018) Modelling biodiversity trends in the Montado (wood pasture) landscapes of the Alentejo, Portugal. Landscape Ecology 33: 811827.CrossRefGoogle Scholar
Soares, C, Príncipe, A, Köbel, M, Nunes, A, Branquinho, C, Pinho, P (2018) Tracking tree canopy cover changes in space and time in high nature value farmland to prioritize reforestation efforts. International Journal of Remote Sensing 39: 47144726.CrossRefGoogle Scholar
Videira, N, Antunes, P, Santos, R (2017) Engaging stakeholders in environmental and sustainability decisions with participatory system dynamics modelling. In: Environmental Modelling with Stakeholders: Theory, Methods, and Applications , eds. Gray, S, Paolisso, M, Jordan, R, Gray, S, pp. 241266. Berlin, Germany: Springer.CrossRefGoogle Scholar
Watts, ME, Klein, CJ, Stewart, RR, Ball, IR, Possingham, HP (2008a) Marxan with Zones (V1.0.1): Conservation Zoning Using Spatially Explicit Annealing, a Manual . Brisbane, Australia: University of Queensland Press.Google Scholar
Watts, ME, Steinback, C, Klein, C (2008b) User Guide: Applying Marxan with Zones-North Central Coast of California Marine Study . Brisbane, Australia: University of Queensland Press.Google Scholar
Watts, ME, Ball, IR, Stewart, RR, Klein, CJ, Wilson, K, Steinback, C, Lourival, R et al. (2009) Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environmental Modelling and Software 24: 15131521.CrossRefGoogle Scholar
Wätzold, F, Drechsler, M, Armstrong, CW, Baumgärtner, S, Grimm, V, Huth, A, Perrings, C et al. (2006). Ecological–economic modeling for biodiversity management: potential, pitfalls, and prospects. Conservation Biology 20: 10341041.CrossRefGoogle ScholarPubMed
Wilson, KA, Meijaard, E, Drummond, S, Grantham, HS, Boitani, L, Catullo, G, Christie, L et al. (2010) Conserving biodiversity in production landscapes. Ecological Applications 20: 17211732.CrossRefGoogle ScholarPubMed
Wunder, S, Brouwer, R, Engel, S, Ezzine-de-Blas, D, Muradian, R, Pacual, U, Pinto, R (2018) From principles to practice in paying for nature’s services. Nature Sustainability 1: 145150.CrossRefGoogle Scholar
Supplementary material: File

Pinto et al. supplementary material

Pinto et al. supplementary material 1

Download Pinto et al. supplementary material(File)
File 474.1 KB
Supplementary material: File

Pinto et al. supplementary material

Pinto et al. supplementary material 2

Download Pinto et al. supplementary material(File)
File 48.1 KB
Supplementary material: File

Pinto et al. supplementary material

Pinto et al. supplementary material 3

Download Pinto et al. supplementary material(File)
File 43 KB