Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T00:16:43.504Z Has data issue: false hasContentIssue false

Re-greening of agrosystems in the Burkina Faso Sahel: greater drought resilience but falling woody plant diversity

Published online by Cambridge University Press:  03 June 2020

Wendpouiré Arnaud Zida*
Affiliation:
Institute of Environmental and Agricultural Research, INERA, DEF, 04 BP 8645Ouagadougou 04, Burkina Faso Institute of Environmental Sciences, University of Quebec in Montreal, CP 8888 succ. Centre-Ville, Montreal, H3C 3P8, Canada
Babou André Bationo
Affiliation:
Institute of Environmental and Agricultural Research, INERA, DEF, 04 BP 8645Ouagadougou 04, Burkina Faso
Jean-Philippe Waaub
Affiliation:
Department of Geography, GEIGER, GERAD, University of Quebec in Montreal, CP 8888 succ. Centre-Ville, Montreal, H3C 3P8, Canada
*
Author for correspondence: Dr Wendpouiré Arnaud Zida, Email: [email protected]

Summary

Droughts and land degradation result in biodiversity and ecosystem service losses with serious implications for human wellbeing. The Sahel region has seen increased plant cover since the end of 1970s–1980s droughts, but understanding the nature and implications of this change remains a priority. This study aimed to assess changes in the woody floristic composition of re-greened agrosystems since the droughts in Burkina Faso. In 148 vegetation survey plots distributed across areas with increasing woody plant cover and those to some extent protected from exploitation, a total of 71 species from 51 genera and 23 families were identified. Compared to pre-drought flora, our measurements show a decline in the diversity and density of woody species. Combretaceae species and thorny species of the genera Acacia and Balanites, which are more tolerant of drought, were the most dominant, indicating a post-drought woody vegetation that is more resistant to water stress. The increased presence of food-producing species in agroforestry parks (cultivated fields with woody plants) seems to reflect the growing needs of the human population.

Type
Research Paper
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A, Lebel, T, Amani, A (2008) Signification et usage de l’indice pluviométrique au Sahel. Sécheresse 19(4): 227235.Google Scholar
ANAM-BF (2017) Données pluviométriques, Agence Nationale de la Météorologie, Ouagadougou, Burkina-Faso [www document]. URL http://www.meteoburkina.bf/index.phpGoogle Scholar
Antos, JA, Parish, R (2002) Dynamics of an old-growth, fire-initiated, subalpine forest in southern interior British Columbia: tree size, age, and spatial structure. Canadian Journal of Forest Research 32: 19351946.CrossRefGoogle Scholar
Anyamba, A, Tucker, CJ (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of Arid Environments 63(3): 596614.CrossRefGoogle Scholar
Bamba, A, Dieppois, B, Konaré, A, Pellarin, T, Balogun, A, Dessay, Net al. (2015) Changes in vegetation and rainfall over West Africa during the last three decades (1981–2010). Atmospheric and Climate Sciences 5: 367379.CrossRefGoogle Scholar
Bognounou, F, Thiombiano, A, Savadogo, P, Boussim, IJ, Oden, PC, Guinko, S (2009) Woody vegetation structure and composition at four sites along a latitudinal gradient in Western Burkina Faso. Bois et Forêt des Tropiques 300(2): 2944.CrossRefGoogle Scholar
Brandt, M, Hiernaux, P, Rasmussen, K, Mbow, C, Kergoat, L, Tagesson, Tet al. (2016) Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. Remote Sensing of Environment 183: 215225.CrossRefGoogle Scholar
Brandt, M, Romankiewicz, C, Spiekermann, R, Samimi, C (2014a) Environmental change in time series – an interdisciplinary study in the Sahel of Mali and Senegal. Journal of Arid Environments 105: 5263.CrossRefGoogle Scholar
Brandt, M, Verger, A, Diouf, AA, Baret, F, Samimi, C (2014b) Local vegetation trends in the Sahel of Mali and Senegal using long time series FAPAR satellite products and field measurement (1982–2010). Remote Sensing 6(3): 24082434.CrossRefGoogle Scholar
Bray, JR, Curtis, JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4): 325349.CrossRefGoogle Scholar
Breman, H, Kessler, JJ (1997) The potential benefits of agroforestry in the Sahel and other semi-arid regions. European Journal of Agronomy 7: 2533.CrossRefGoogle Scholar
Ceperley, N, Montagnini, F, Natta, A (2010) Significance of sacred sites for riparian forest conservation in central Benin. Bois et Forêts des Tropiques 303(1): 523.CrossRefGoogle Scholar
Chang, CC, Turner, BL (2019) Ecological succession in a changing world. Journal of Ecology 107(2): 503509.CrossRefGoogle Scholar
Chao, A, Chazdon, RL, Colwell, RK, Shen, T-J (2006) Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometric 62: 361371.CrossRefGoogle ScholarPubMed
Couwenberghe, RVAN (2011) Effets des facteurs environnementaux sur la distribution et l’abondance des espèces végétales forestières aux échelles locales et régionales. Paris, France: AgroParisTech.Google Scholar
D’Odorico, P, Bhattachan, A, Davis, KF, Ravi, S, Runyan, CW (2013) Global desertification: drivers and feedbacks. Advances in Water Resources 51: 326344.CrossRefGoogle Scholar
Dagnelie, P (1998) Statistiques théoriques et appliquées. Tome 1: Statistique descriptive et bases de l’influence statistique. Paris, France, and Brussels, Belgium: De Boeck et Larcier.Google Scholar
Darwin, C (1921) L’Origine des espèces au moyen de la sélection naturelle ou la lutte pour l’existence dans la nature, origine des espèces au moyen de la sélection naturelle, ou, La lutte pour l’existence dans la nature. Paris, France: Ancienne Librairie Schleicher.Google Scholar
Dijk, HV, Bose, P (2016) Dryland landscapes: forest management, gender and social diversity in Asia and Africa. In Dryland Forests: Management and Social Diversity in Africa and Asia, eds Bose, P, Dijk, HV, pp. 321. Cham, Switzerland: Springer International Publishing.CrossRefGoogle Scholar
Dollinger, J, Shibu, J (2018) Agroforestry for soil health. Agroforestry Systems 92(2): 213219.CrossRefGoogle Scholar
EEM (2005) Ecosystèmes et bien-être humain: Synthèse sur la désertification. Washington, DC, USA: Island Press.Google Scholar
Epule, ET, Peng, C, Lepage, L, Chen, Z (2014) The causes, effects and challenges of Sahelian droughts: a critical review. Regional Environmental Change 14: 145156.CrossRefGoogle Scholar
Erktan, A (2013) Interactions entre composition fonctionnelle de communautés végétales et formation des sols dans des lits de ravines en cours de restauration écologique. Doctoral thesis, Université de Grenoble.Google Scholar
Gandhi, GM, Parthiban, S, Thummalu, N, Christy, A (2015) NDVI: vegetation change detection using remote sensing and GIS – a case study of Vellore District. Procedia Computer Science 57: 11991210.CrossRefGoogle Scholar
Gonzalez, P, Tucker, CJ, Sy, H (2012) Tree density and species decline in the African Sahel attributable to climate. Journal of Arid Environments 78: 5564.CrossRefGoogle Scholar
Hänke, H, Börjeson, L, Hylander, K, Enfors-Kautsky, E (2016) Drought tolerant species dominate as rainfall and tree cover returns in the West African Sahel. Land Use Policy 59: 111120.CrossRefGoogle Scholar
Harris, JA, Hobbs, RJ, Higgs, E, Aronson, J (2006) Ecological restoration and global climate change. Restoration Ecology 14: 170176.CrossRefGoogle Scholar
Hatfield, JL, Prueger, JH (2015) Temperature extremes: effect on plant growth and development. Weather and Climate Extremes 10: 410.CrossRefGoogle Scholar
Hedhly, A, Hormaza, JI, Herrero, M (2008) Global warming and sexual plant reproduction. Trends in Plant Science 14(1): 3036.CrossRefGoogle ScholarPubMed
Herrmann, SM, Tappan, GG (2013) Vegetation impoverishment despite greening: a case study from central Senegal. Journal of Arid Environments 90: 5566.CrossRefGoogle Scholar
Hiernaux, P, Diarra, L, Trichon, V, Mougin, E, Soumaguel, N, Baup, F (2009) Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). Journal of Hydrology 375(1–2): 103113.CrossRefGoogle Scholar
Hiernaux, P, Cissé, M, Diarra, L, Leeuw, PD (1994) Fluctuations saisonnières de la feuillaison des arbres et des buissons sahéliens. Conséquences pour la quantification des ressources fourragères. Revue internationale sur l′élevage, l’environnement et la santé animale en milieux méditerranéens et tropicaux 47(1): 117125.Google Scholar
Huete, AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25(3): 295309.CrossRefGoogle Scholar
Huete, A, Didan, K, Miura, T, Rodriguez, E, Gao, X, Ferreira, L (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195213.CrossRefGoogle Scholar
Hulme, M (2001) Climatic perspectives on Sahelian desiccation: 1973–1998. Global Environmental Change 11(1): 1929.CrossRefGoogle Scholar
INSD (2009) Projections démographiques de 2007 à 2020. Ouagadougou, Burkina Faso: INSD.Google Scholar
IUCN (2019) The IUCN Red List of Threatened Species [www document]. URL https://www.iucnredlist.orgGoogle Scholar
Jamali, S, Jönsson, P, Eklundh, L, Ardö, J, Seaquist, J (2015) Detecting changes in vegetation trends using time series segmentation. Remote Sensing of Environment 156: 182195.CrossRefGoogle Scholar
Jose, S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems 76: 110.CrossRefGoogle Scholar
Kandji, ST, Verchot, L, Jens, M (2006) Climate Change and Variability in the Sahel Region: Impacts and Adaptation Strategies in the Agricultural Sector. Nairobi, Kenya: ICRAF/UNEP.Google Scholar
Kempton, RA (2006) Species diversity. In Encyclopedia of Environmetrics, pp. 17. Chichester, UK: John Wiley & Sons, Ltd.Google Scholar
Kindt, R, Coe, R (2005) Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. Nairobi, Kenya: ICRAF.Google Scholar
Kusserow, H (2017) Desertification, resilience, and re-greening in the African Sahel – a matter of the observation period? Earth System Dynamics 8: 11411170.CrossRefGoogle Scholar
Lavauden, L (1941) Les forêts coloniales de la France. Mémoire couronné par l’Académie des Sciences coloniales. Revue de botanique appliquée et d’agriculture coloniale 21(239–240): 285365.CrossRefGoogle Scholar
Lebel, T, Ali, A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). Journal of Hydrology 375(1–2): 5264.CrossRefGoogle Scholar
Lebrun, J-P, Toutain, B, Gaston, A, Boudet, G (1991) Catalogue des plantes vasculaires du Burkina Faso. Maisons-Alfort, France: CIRAD-IEMVT.Google Scholar
Lockwood, JL (1997) An alternative to succession: assembly rules offer guide to restoration efforts. Restoration & Management Notes 15(1): 4550.Google Scholar
Magurran, AE (2005) Measuring Biological Diversity. Hoboken, NJ, USA: Blackwell Science, Ltd.Google Scholar
Marcon, E (2017) Mesures de la Biodiversité. Guyane: UMR Écologie des forêts de Guyane.Google Scholar
Mortimore, M (2016) Changing paradigms for people-centred development in the Sahel. In The End of Desertification? Disputing Environmental Change in the Drylands, eds Behnke, R, Mortimore, M, pp. 6598. Berlin, Germany: Springer.CrossRefGoogle Scholar
Nicholson, S (2005) On the question of the ‘recovery’ of the rains in the West African Sahel. Journal of Arid Environments 63(3): 615641.CrossRefGoogle Scholar
Ouédraogo, P, Bationo, BA, Sanou, J, Traoré, S, Barry, S, Dayamba, SDet al. (2017) Uses and vulnerability of ligneous species exploited by local population of northern Burkina Faso in their adaptation strategies to changing environments. Agriculture and Food Security 6(15): 116.CrossRefGoogle Scholar
Ozer, P, Hountondji, Y-C, Niang, AJ, Karimoune, S, Manzo, OL, Salmon, M (2010) Désertification au Sahel: historique et perspectives. BSGLg 54: 6984.Google Scholar
Qi, J, Chehbouni, A, Huete, AR, Kerr, YH, Sorooshian, S (1994) A modified soil adjusted vegetation index. Remote Sensing of Environment 48: 119126.CrossRefGoogle Scholar
Reij, C, Tappan, G, Smale, M (2009) Agroenvironmental Transformation in the Sahel: Another Kind of ‘Green Revolution’. IFPRI Discussion Paper 00914. Washington, DC, USA: International Food Policy Research Institute.Google Scholar
Ricotta, C, Podani, J (2017) On some properties of the Bray–Curtis dissimilarity and their ecological meaning. Ecological Complexity 31: 201205.CrossRefGoogle Scholar
Roberty, G (1946) Les associations végétales de la vallee moyellne du Niger. Bern, Switzerland: Verlag Hans Huber.Google Scholar
Roberty, G (1954) Petite flore de l’Ouest-Africain. Paris, France: ORSTOM.Google Scholar
Sambare, O, Ouedraogo, O, Wittig, R, Thiombiano, A (2011) Diversité et écologie des groupements ligneux des formations ripicoles du Burkina Faso (Afrique de l’Ouest). International Journal of Biological and Chemical Sciences 4(5): 17821800.CrossRefGoogle Scholar
Sattout, E, Caligari, PDS (2011) Forest biodiversity assessment in relic ecosystem: monitoring and management practice implications. Diversity 3: 531546.CrossRefGoogle Scholar
Savadogo, P, Tigabu, M, Sawadogo, L, Odén, PC (2007) Woody species composition, structure and diversity of vegetation patches of a Sudanian savanna in Burkina Faso. Bois et Forêts des Tropiques 294(4): 520.Google Scholar
Savadogo, OM, Ouattara, K, Pare, S, Ouedraogo, I, Sawadogo-Kaboré, S, Barron, J, Zombre, NP (2016) Structure, composition spécifique et diversité des ligneux dans deux zones contrastées en zone Sahélienne du Burkina Faso. VertigO 16(1).Google Scholar
Schmidt, M, Zizka, G (2014) Plant species associated with different levels of species richness and of vegetation cover as indicators of desertification in Burkina Faso (West Africa). Flora et Vegetatio Sudano-Sambesica 17: 38.Google Scholar
Sendzimir, J, Reij, CP, Magnuszewski, P (2011) Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecology and Society 16(3): 1.CrossRefGoogle Scholar
Sidibé, D, Sanou, H, Bayala, J, Teklehaimanot, Z (2017) Yield and biomass production by African eggplant (Solanum aethiopicum) and sorghum (Sorghum bicolor) intercropped with planted Ber (Ziziphus mauritiana) in Mali (West Africa). Agroforestry Systems 91(6): 10311042.CrossRefGoogle Scholar
Sissoko, K, Keulen, HV, Verhagen, J, Tekken, V, Battaglini, A (2011) Agriculture, livelihoods and climate change in the West African Sahel. Regional Environmental Change 11: 119125.CrossRefGoogle Scholar
Sop, TK, Oldeland, J (2013) Local perceptions of woody vegetation dynamics in the context of a ‘greening Sahel’: a case study from Burkina Faso. Land Degradation and Development 24: 511527.CrossRefGoogle Scholar
Steinig, S, Harlaß, J, Park, W, Latif, M (2018) Sahel rainfall strength and onset improvements due to more realistic Atlantic cold tongue development in a climate model. Scientific Reports 8: 19.CrossRefGoogle Scholar
Suding, KN, Gross, KL, Houseman, GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19(1): 4653.CrossRefGoogle ScholarPubMed
Thiombiano, A, Schmidt, M, Dressler, S, Ouédraogo, A, Hahn, K, Zizka, G (2012) Catalogue des plantes vasculaires du Burkina Faso. Geneva, Switzerland: Boissiera 65.Google Scholar
Tindano, E, Ganaba, S, Sambare, O, Thiombiano, A (2015) La végétation des inselbergs du Sahel burkinabé. Bois et Forêts des Tropiques 325(3): 2133.CrossRefGoogle Scholar
USGS (2017) Satellite image data source [www document]. URL https://glovis.usgs.gov/appGoogle Scholar
Vaughan, H, Brydges, T, Fenech, A, Lumb, A (2001) Monitoring long-term ecological changes through the ecological monitoring and assessment network: science-based and policy relevant. Environmental Monitoring and Assessment 67: 328.CrossRefGoogle ScholarPubMed
Vincke, C, Dhiou, ID, Grouzis, M (2009) Long term dynamics and structure of woody vegetation in the Ferlo (Senegal). Journal of Arid Environments 74: 268276.CrossRefGoogle Scholar
Walker, LR, Moral, RD (2003) Primary Succession and Ecosystem Rehabilitation. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Zida, WA, Bationo, BA, Waaub, J-P (2019a) Effects of land-use practices on woody plant cover dynamics in Sahelian agrosystems in Burkina Faso since 1970–1980 droughts. Sustainability 11(21): 5908.CrossRefGoogle Scholar
Zida, WA, Traoré, F, Bationo, BA, Waaub, J-P (2019b) Dynamics of woody plant cover in the Sahelian agroecosystems of the northern region of Burkina Faso since the 1970s–1980s droughts. Canadian Journal of Forest Research, epub ahead of print, DOI: 10.1139/cjfr-2019-0247.Google Scholar
Supplementary material: File

Zida et al. supplementary material

Table S2

Download Zida et al. supplementary material(File)
File 21.5 KB
Supplementary material: File

Zida et al. supplementary material

Table S1

Download Zida et al. supplementary material(File)
File 13.8 KB
Supplementary material: PDF

Zida et al. supplementary material

Figure S1

Download Zida et al. supplementary material(PDF)
PDF 101.4 KB
Supplementary material: File

Zida et al. supplementary material

Table S3

Download Zida et al. supplementary material(File)
File 13.4 KB