Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:20:16.488Z Has data issue: false hasContentIssue false

Future ant invasions in France

Published online by Cambridge University Press:  02 January 2014

CLEO BERTELSMEIER*
Affiliation:
Ecologie, Systématique en Evolution, UMR CNRS 8079, Universitaire Paris Sud, Orsay Cedex 91405, France
FRANCK COURCHAMP
Affiliation:
Ecologie, Systématique en Evolution, UMR CNRS 8079, Universitaire Paris Sud, Orsay Cedex 91405, France
*
*Correspondence: Dr Cleo Bertelsmeier Tel: +33 01 69 15 56 93 Fax: +33 01 69 15 56 96 e-mail: [email protected], [email protected]

Summary

Ants are among the worst invasive species, and can have tremendous negative impacts on native biodiversity, agriculture, estates, property and human health. Invasive ants are extremely difficult to control, and thus early detection is essential to prevent ant invasions, in particular through surveillance efforts at ports of entry. This paper assesses the potential distribution of 14 of the worst invasive ant species in France, under current and future climatic conditions. Consensus species distribution models, using five different modelling techniques, three global climate models and two CO2 emission scenarios, indicated that France presented suitable areas for 10/14 species, including five listed on the Invasive Species Specialist Group's selection of the world's 100 worst invasive species. Among these 10 species, eight were predicted to increase their potential range with climate change. Areas with the highest concentration of potential invaders were mainly located along the coastline, especially in the south-west of France, but all departments appeared to be climatically suitable for at least two invasive species. A ranking of climatic suitability per species for 17 major airports and 14 maritime ports indicated that the ports of entry with the highest suitability were located in Biarritz, Toulon and Nice, and the species with the greatest potential distribution in France were Lasius neglectus and Linepithema humile, followed by Solenopsis richteri, Pheidole megacephala and Wasmannia auropunctata.

Type
THEMATIC SECTION: Spatial Simulation Models in Planning for Resilience
Copyright
Copyright © Foundation for Environmental Conservation 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, K.L. (2005) Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insectes Sociaux 52: 266273.CrossRefGoogle Scholar
Abbott, K.L. & Green, P.T. (2007) Collapse of an ant-scale mutualism in a rainforest on Christmas Island. Oikos 116: 12381246.Google Scholar
Agreste (2012) Statistique agricole annuelle (SAA). Report. Ministère de l'agriculture, de l'agroalimentaire et la forêt, Paris, France. http://agreste.agriculture.gouv.fr/enquetes/statistique-agricole-annuelle-saa/ Google Scholar
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distribution. Trends in Ecology and Evolution 22: 4247.CrossRefGoogle Scholar
Araujo, M.B. & Peterson, A.T. (2012) Uses and misuses of bioclimatic envelope modelling. Ecology 93: 15271539.CrossRefGoogle Scholar
Beaumont, L.J., Gallagher, R.V, Thuiller, W., Downey, P.O., Leishman, M.R. & Hughes, L. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions 15: 409420.CrossRefGoogle Scholar
Benmessaoud, L. (2013) Bilan annuel des ports et des voies navigables. Résultats 2011. Report. Ministère de l'Ecologie, du Développement et de l'Energie, Paris: 38 pp. [www document]. URL http://www.developpement-durable.gouv.fr/IMG/pdf/2011_-_Bilan_annuel_des_ports_maritimes_et_voies_navigables.pdf Google Scholar
Bertelsmeier, C., Luque, G.M. & Courchamp, F. (2013 a) More and better: two ways to increase invasive range under climate change. Conservation Biology (in press).Google Scholar
Bertelsmeier, C., Luque, G.M. & Courchamp, F. (2013 b) Global warming may freeze the invasion of big-headed ants. Biological Invasions 15: 15611572.CrossRefGoogle Scholar
Blight, O., Provost, E., Renucci, M., Tirard, A. & Orgeas, J. (2010) A native ant armed to limit the spread of the Argentine ant. Biological Invasions 12: 37853793.CrossRefGoogle Scholar
Bradley, B.A., Wilcove, D.S. & Oppenheimer, M. (2010) Climate change increases risk of plant invasion in the Eastern United States. Biological Invasions 12: 18551872.CrossRefGoogle Scholar
Butchart, S. et al. (2010) Global biodiversity: indicators of recent declines. Science 328: 11641168.CrossRefGoogle ScholarPubMed
Clark, D., Guayasalin, C., Pazmino, O., Donoso, C. & Paez de Villacis, Y. (1982) The tramp ant Wasmannia auropunctata: autoecology and effects on ant diversity and distribution on Santa Cruz Island, Galapagos. Biotropica 14: 196207.CrossRefGoogle Scholar
Cremer, S., Ugelvig, L.V., Drijfhout, F.P., Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Hughes, D.P., Schulz, A., Petersen, K.S., Konrad, H., Stauffer, C., Kiran, K., Espadaler, X., D'Ettorre, P., Aktac, N., Eilenberg, J., Jones, G.R., Nash, D.R., Pedersen, J.S., Boomsma, J.J., Aktaç, N., Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332: 53–8.Google Scholar
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA 105: 66686672.CrossRefGoogle ScholarPubMed
DGCIS (2012) Key facts on tourism. Report. Ministère de l'artisanat, du commerce et du tourisme, Paris, France: 8 pp. [www document]. URL http://www.dgcis.gouv.fr/tourisme Google Scholar
Diamond, S., Sorger, D.M., Hulcr, J., Pelini, S.L., Del Toro, I., Hirsch, C., Oberg, E. & Dunn, R.R. (2012) Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Global Change Biology 18: 448456.CrossRefGoogle Scholar
Dunn, R.R., Agosti, D., Andersen, A.N., Arnan, X., Bruhl, C.A., Cerdá, X., Ellison, A.M., Fisher, B.L., Fitzpatrick, M.C., Gibb, H., Gotelli, N.J., Gove, A.D., Guenard, B., Janda, M., Kaspari, M., Laurent, E.J., Lessard, J.-P. P., Longino, J.T., Majer, J.D., Menke, S.B., McGlynn, T.P., Parr, C.L., Philpott, S.M., Pfeiffer, M., Retana, J., Suarez, A.V., Vasconcelos, H.L., Weiser, M.D. & Sanders, N.J. (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters 12: 324–33.CrossRefGoogle ScholarPubMed
Elith, J., Graham, C., Anderson, R. & Dudik, M. (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29: 129151.CrossRefGoogle Scholar
Espadaler, X. & Bernal, V. (2011) Lasius neglectus: a polygynous, sometimes invasive ant. Report. Universidad Autonoma Barcelona [www document]. URL http://www.creaf.uab.es/xeg/lasius/ Google Scholar
Espadaler, X. & Rey, S. (2001) Biological constraints and colony founding in the polygynous invasive ant Lasius neglectus (Hymenoptera, Formicidae). Insectes Sociaux 48: 159164.CrossRefGoogle Scholar
Espadaler, X., Tartally, A., Schultz, R., Seifert, B. & Nagy, C. (2007) Regional trends and preliminary results on the local expansion rate in the invasive garden ant, Lasius neglectus (Hymenoptera, Formicidae). Insectes Sociaux 54: 293301.CrossRefGoogle Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 3849.CrossRefGoogle Scholar
Franklin, J. (2009) Mapping Species Distributions. Spatial Inference and Prediction. Cambridge, UK: Cambridge University Press.Google Scholar
Giraud, T., Pedersen, J.S. & Keller, L. (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proceedings of the National Academy of Sciences USA 99: 60756079.CrossRefGoogle ScholarPubMed
Gotelli, N. & Arnett, A. (2000) Biogeographic effects of red fire ant invasion. Ecology Letters 3: 257261.CrossRefGoogle Scholar
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.CrossRefGoogle ScholarPubMed
Guo, Q.H. & Liu, Y. (2010) ModEco: an integrated software package for ecological niche modeling. Ecography 33: 637642.CrossRefGoogle Scholar
Harris, R. & Berry, J. (2005 a) Invasive ant threat. Information Sheet Number 9. Lasius neglectus. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0013/51016/9.pdf Google Scholar
Harris, R. & Berry, J. (2005 b) Invasive ant threat. Information Sheet Number 10. Monomorium destructor. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0014/51017/10.pdf Google Scholar
Harris, R. & Berry, J. (2005 c) Invasive ant threat. Information Sheet Number 20. Paratrechina longicornis. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0014/51026/20.pdf Google Scholar
Harris, R. & Berry, J. (2005 d) Invasive ant threat. Information Sheet Number 24. Solenopsis geminata. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0009/51030/24.pdf Google Scholar
Harris, R. & Berry, J. (2005 e) Invasive ant threat. Information Sheet Number 27. Solenopsis richteri. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0012/51033/27.pdf Google Scholar
Harris, R. & Berry, J. (2005 f) Invasive ant threat. Information Sheet Number 32. Tapinoma melanocephalum. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0017/51038/32.pdf Google Scholar
Harris, R. & Barker, G. (2007) Relative risk of invasive ants (Hymenoptera: Formicidae) establishing in New Zealand. New Zealand Journal of Zoology 34: 161178.CrossRefGoogle Scholar
Harris, R.J. & Rees, J. (2004) Ant distribution database. Landcare Research, New Zealand [www document]. URL www.landcareresearch.co.nz/research/biocons/invertebrates/ants/distribution Google Scholar
Harris, R., Abbott, K. & Berry, J. (2005) Invasive ant threat. Information Sheet Number 1. Anoplolepis gracilipes. Landcare Research, New Zealand [www document]. URL http://www.landcareresearch.co.nz/__data/assets/pdf_file/0014/51008/1.pdf Google Scholar
Hartley, S., Krushelnycky, P. D. & Lester, P. J. (2010) Integrating physiology, population dynamics and climate to make multi-scale predictions for the spread of an invasive insect: the Argentine ant at Haleakala National Park, Hawaii. Ecography 33: 8394.CrossRefGoogle Scholar
Hartley, S. & Lester, P.J. (2003) Temperature-dependent development of the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae): a degree-day model with implications for range limits in New Zealand. New Zealand Entomologist 26: 91100.CrossRefGoogle Scholar
Hill, M., Holm, K., Vel, T., Shah, N. & Matyot, P. (2003) Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodiversity and Conservation 12: 19691984.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.CrossRefGoogle Scholar
Hijmans, R.J., Cruz, M. & Rojas, E. (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Genetic Resources Newsletter 127: 1519.Google Scholar
Hoffmann, B.D., Abbott, K.L. & Davis, P.D. (2010) Invasive ant management. In: Ant Ecology, ed. Lach, L., Parr, C.L. & Abbott, K.L., pp. 287304. Oxford, UK: Oxford University Press.Google Scholar
Hoffmann, B.D. & Parr, C.L. (2008) An invasion revisited: the African big-headed ant (Pheidole megacephala) in northern Australia. Biological Invasions 10: 11711181.CrossRefGoogle Scholar
Hoffmann, B.D. & O'Connor, S. (2004) Eradication of two exotic ants from Kakadu National Park. Ecological Management and Restoration 5: 98105.CrossRefGoogle Scholar
Hoffmann, B.D., Andersen, A.N. & Hill, G.J.E. (1999) Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia 120: 595604.Google ScholarPubMed
Holway, D., Lach, L., Suarez, A.V, Tsutsui, N.D. & Case, T.J. (2002) The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33: 181233.CrossRefGoogle Scholar
Holway, D. & Suarez, A. (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biological Conservation 127: 319326.CrossRefGoogle Scholar
Holway, D. (1999) Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80: 238251.CrossRefGoogle Scholar
Human, K.G.G. & Gordon, D.M.M. (1996) Exploitation and interference competition between the invasive Argentine ant, I.inepithema humile, and native ant species. Oecologia 105: 405412.CrossRefGoogle ScholarPubMed
IPCC (2007) Climate Change 2007: Synthesis Report. An Assessment of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC: 104 pp.Google Scholar
IUCN SSC ISSG (2012) Global invasive species database [www document]. URL http://www.issg.org/database Google Scholar
Jenkins, C.N.C., Sanders, N.N.J., Andersen, A.N., Arnan, X., Brühl, C.A., Cerda, X., Ellison, A.M., Fisher, B.L., Fitzpatrick, M.C., Gotelli, N.J., Gove, A.D., Guénard, B., Lattke, J E., Lessard, J.-P., McGlynn, T.P., Menke, S.B., Parr, C.L., Philpott, S.M., Vasconcelos, H.L., Weiser, M.D. & Dunn, R.R. (2011) Global diversity in light of climate change: the case of ants. Diversity and Distributions 17 (4): 652662.CrossRefGoogle Scholar
Kaiser, B. & Burnett, K. (2010) Spatial economic analysis of early detection and rapid response strategies for an invasive species. Resource and Energy Economics 32: 566585.CrossRefGoogle Scholar
Klamt, M., Thompson, R. & Davis, J. (2011) Early response of the platypus to climate warming. Global Change Biology 17: 30113018.CrossRefGoogle Scholar
Lach, L. & Hooper-Bui, L.M. (2010) Consequences of ant invasions. In: Ant Ecology, ed. Lach, L., Parr, C.L. & Abbott, K.L., pp. 261286. Oxford, UK: Oxford University Press.Google Scholar
Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. (2000) 100 of the world's worst invasive alien species. A selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN): 12 pp. [www document]. URL http://www.issg.org/database/species/reference_files/100English.pdf Google Scholar
Moreira, D.D.O., De Morais, V., Vieira-Da-Motta, O., Campos-Farinha, A.E.D. & Tonhasca, A. (2005) Ants as carriers of antibiotic-resistant bacteria in hospitals. Neotropical Entomology 34: 9991006.CrossRefGoogle Scholar
Morrison, L.W., Korzukhin, M.D. & Porter, S.D. (2005) Predicted range expansion of the invasive fire ant, Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Diversity and Distributions 11: 199204.CrossRefGoogle Scholar
Morrison, L., Porter, S., Daniels, E. & Korzukhin, M. (2004) Potential global range expansion of the invasive fire ant, Solenopsis invicta . Biological Invasions 6: 183191.CrossRefGoogle Scholar
Nenzén, H.K. & Araújo, M.B. (2011) Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling 222: 33463354.CrossRefGoogle Scholar
Morrison, L.W. (2002) Long-term impacts of an arthropod-community invasion by the imported fire ant. Solenopsis invicta. Ecology 83: 23372345.CrossRefGoogle Scholar
O'Dowd, D.J., Green, P.T. & Lake, P.S. (2003) Invasional ‘meltdown’ on an oceanic island. Ecology Letters 6: 812817.CrossRefGoogle Scholar
Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225245.CrossRefGoogle Scholar
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. & Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 13441348.CrossRefGoogle ScholarPubMed
Rabitsch, W. (2011) The hitchhiker's guide to alien ant invasions. BioControl 56: 551572.CrossRefGoogle Scholar
Rice, E.S. & Silverman, J. (2013) Propagule pressure and climate contribute to the displacement of Linepithema humile by Pachycondyla chinensis . PLoS ONE 8: e56281.CrossRefGoogle Scholar
Root, B.A., Price, J.T. & Hall, K. (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 4760.CrossRefGoogle ScholarPubMed
Ross, K.G., Vargo, E.L. & Keller, L. (1996) Social evolution in a new environment: the case of introduced fire ants. Proceedings of the National Academy of Sciences USA 93: 3021–5.CrossRefGoogle Scholar
Roura-Pascual, N., Brotons, L., Peterson, A.T. & Thuiller, W. (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological Invasions 11: 10171031.CrossRefGoogle Scholar
Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M., Carpintero, S., Espadaler, X., Gomez, C., Guenard, B., Hartley, S., Krushelnycky, P., Lester, P.J., McGeoch, M.A., Menke, S.B., Pedersen, J.S., Pitt, J.P.W., Reyes, J., Sanders, N.J., Suarez, A.V, Touyama, Y., Ward, D., Ward, P.S. & Worner, S.P. (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences USA 108: 220225.CrossRefGoogle Scholar
Roura-Pascual, N., Suarez, A.V, Gomez, C., Pons, P., Touyama, Y., Wild, A.L., Peterson, A.T. & Gómez, C. (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proceedings of the Royal Society of London Series B: Biological Sciences 271: 25272534.CrossRefGoogle ScholarPubMed
Sanders, N.J., Lessard, J.P., Fitzpatrick, M.C. & Dunn, R.R. (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography 16: 640649.CrossRefGoogle Scholar
Scanlan, J. & Vanderwoude, C. (2006) Modelling the potential spread of Solenopsis invicta Buren (Hymenoptera: Formicidae) (red imported fire ant) in Australia. Australian Journal of Entomology 45: 19.CrossRefGoogle Scholar
Simberloff, D. (2003) How much information on population biology is needed to manage introduced species? Conservation Biology 17: 8392.CrossRefGoogle Scholar
Simberloff, D., Martin, J.-L., Genovesi, P.V., Maris, D., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pysek, P., Sousa, R., Tabacchi, E., Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution 28: 5866.CrossRefGoogle ScholarPubMed
Sinclair, S., White, M. & Newell, G. (2010) How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15: 8.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., VanDerWal, J., Reuther, K.D., Christian, E., Stauffer, C., Suarez, A.V., Williams, S.E. & Crozier, R.H. (2008) Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Diversity and Distributions 14: 538545.CrossRefGoogle Scholar
Suarez, A.V, Holway, D.A. & Ward, P.S. (2005) The role of opportunity in the unintentional introduction of nonnative ants. Proceedings of the National Academy of Sciences USA 102: 1703217035.CrossRefGoogle ScholarPubMed
Suarez, A. & Bolger, D. (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79: 20412056.CrossRefGoogle Scholar
Synes, N.W. & Osborne, P.E. (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Global Ecology and Biogeography 20: 9041919.CrossRefGoogle Scholar
Tschinkel, W. (2006) The Fire Ants. Cambridge, MA, USA and London, UK: The Belknap Press of Harvard University Press.Google Scholar
Tsutsui, N.D., Suarez, A.V., Holway, D.A. & Case, T.J. (2000) Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences USA 97: 5948.CrossRefGoogle ScholarPubMed
Ugelvig, L.V., Drijhout, F.P., Kronauer, D.J.C., Boomsma, J.J., Pedersen, J.S. & Cremer, S. (2008) The introduction history of invasive garden ants in Europe: integrating genetic, chemical and behavioural approaches. BMC Biology 6: 11.CrossRefGoogle ScholarPubMed
Union des aéroports français (2012) Rapport d'activité des aéroports français 2012. Statistiques de trafic. Union des aéroports français, Paris, France: 71 pp.Google Scholar
Vanderwoude, C., De Bruyn, L.A.L. & House, A.P.N. (2000) Response of an open-forest ant community to invasion by the introduced ant, Pheidole megacephala . Austral Ecology 25: 253259.CrossRefGoogle Scholar
Warren, D.L. (2012) In defense of ‘niche modeling’. Trends in Ecology and Evolution 27: 497500.CrossRefGoogle ScholarPubMed
Wetterer, J. (2009) Worldwide spread of the destroyer ant, Monomorium destructor (Hymenoptera: Formicidae). Myrmecological News 12: 97108.Google Scholar
Wetterer, J. (2010) Worldwide spread of the pharaoh ant, Monomorium pharaonis (Hymenoptera: Formicidae). Myrmecological News 1793: 115129.Google Scholar
Wetterer, J.K. (2007) Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacific Science 61: 437456.CrossRefGoogle Scholar
WTO (2011) International Trade Statistics 2011. Geneva, Switzerland: World Trade Organization: 269 pp.Google Scholar
Supplementary material: File

Bertelsmeier and Courchamp Supplementary Material

Appendix

Download Bertelsmeier and Courchamp Supplementary Material(File)
File 18.5 KB