Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T00:47:10.114Z Has data issue: false hasContentIssue false

Chlorofluorocarbons, Stratospheric Ozone, and the Antarctic ‘Ozone Hole’

Published online by Cambridge University Press:  24 August 2009

F. Sherwood Rowland
Affiliation:
Daniel G. Aldrich, Jr, Professor of Chemistry, University of California at Irvine, Irvine, California 92717, USA.

Extract

The momentous subject of chlorofluorocarbons (CFCs) and their effect on The Biosphere's stratospheric ozone shield is treated rather generally but in sufficient depth where necessary in three main sections dealing with (i) scientific background and current status of ongoing investigation, (ii) the major technological uses of CFCs and available or foreseeable alternatives to them, and (iii) the policy status and regulatory activity involving present or proposed future restrictions in CFC emissions.

It being unlikely that life, at least as we know it, would have developed on Earth without an ozone layer in the stratosphere to ‘filter off’ harmful ultraviolet rays from solar radiation, the prospect of continuing manufacture in developing countries of its destroyers is highly alarming, especially as these destructive CFCs may take more than a decade from emission to reach the levels around 40 km altitude at which they do the most harm.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birrer, W. (1975). Homogenisierung und Diskussion der Total-Ozon-Messreihe in Arosa 1926–71. Lapeth-11, Doctoral thesis from the Laboratory of Atmospheric Physics, Zürich, Switzerland. [Not available for checking.]Google Scholar
Blake, D.R. & Rowland, F.S. (1988). Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239, pp. 1129–31.CrossRefGoogle ScholarPubMed
Bowman, K.P. (1988). Global trends in total ozone. Science, 239, pp. 4850.CrossRefGoogle ScholarPubMed
Bowman, K.P. & Krueger, A.J. (1985). A global climatology of total ozone from the Nimbus-7 Total Ozone Mapping Spectrometer. J. Geophys. Res., 90, pp. 7967–76.CrossRefGoogle Scholar
Brodeur, P. (1975). Annals of Chemistry (Aerosol Sprays): Inert. New Yorker, 7 04 1975, p. 4758.Google Scholar
Brodeur, P. (1986). Annals of Chemistry (The Ozone Layer): In the Face of Doubt. New Yorker, 9 06 1986, pp. 7087.Google Scholar
Callis, L.B. & Natarajan, M. (1986 a). Ozone and nitrogen dioxide changes in the stratosphere during 1979–1984. Nature (London), 323, pp. 772–7.CrossRefGoogle Scholar
Callis, L.B. & Natarajan, M. (1986 b). The Antarctic ozone minimum: relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle. J. Geophys. Res., 91, pp. 10771–96.CrossRefGoogle Scholar
Chubachi, S. (1984). Preliminary result of ozone observation at Syowa station from February 1982 to January 1983. Mem. Natl Inst. Polar Res., Spec. Issue, 34, pp. 13–9.Google Scholar
Chubachi, S. & Kajiwara, R. (1986). Total ozone variations at Syowa, Antarctica. Geophys. Res. Lett., 13, pp. 1197–8.CrossRefGoogle Scholar
Crutzen, P. & Arnold, F. (1986). Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ‘ozone hole’. Nature (London), 324, pp. 651–5.CrossRefGoogle Scholar
Cunnold, D.M., Prinn, R.G., Rasmussen, R.A., Simmonds, P.G., Alyea, F.N., Cardelino, C.A., Crawford, A.J., Fraser, P.J. & Rosen, R.D. (1983 a). The atmospheric lifetime experiment, 3: Lifetime methodology and application to 3 years of CFCl3 data. J. Geophys. Res., 88, pp. 8379–400.CrossRefGoogle Scholar
Cunnold, D.M., Prinn, R.G., Rasmussen, R.A., Simmonds, P.G., Alyea, F.N., Cardelino, C.A. & Crawford, A.J. (1983 b). The atmospheric lifetime experiment, 4: Results for CF12 based on 3 years of data. J. Geophys. Res., 88, pp. 8401–14.CrossRefGoogle Scholar
Cunnold, D.M., Prinn, R.G., Rasmussen, R.A., Simmonds, P.G., Alyea, F.N., Cardelino, C.A., Crawford, A.J., Fraser, P.J. & Rosen, R.D. (1986). Atmospheric lifetime and annual release estimates for CFCl3 and CF2Cl2 from 5 years of ALE data. J. Geophys. Res., 91, pp. 10797–817.CrossRefGoogle Scholar
de Zafra, R.L.see Zafra, R.L. deGoogle Scholar
Dotto, L. & Schiff, H. (1978). The Ozone War. Doubleday & Co., Garden City, New York, NY, USA: 342 pp.Google Scholar
Dütsch, H.U. (1984). An update of the Arosa ozone series to the present using a statistical instrument calibration. Quart. J.R. Met. Soc., 110, pp. 1079–96.CrossRefGoogle Scholar
Dütsch, H.U. (1985). Total ozone in the light of ozone soundings, the impact of El Chichon. Pp. 263–68 in Atmospheric Ozone (Eds Zerefos, C.S. & Ghazi, E.). D. Reidel Co., Dordrecht, The Netherlands: [not available for checking].CrossRefGoogle Scholar
Dütsch, H.U. (1987). The Antarctic ‘ozone hole’ and its possible global consequences. Environmental Conservation, 14(2), pp. 95–7, 2 figs.CrossRefGoogle Scholar
Elliott, S. & Rowland, F.S. (1988). Comment on ‘Further interpretation of satellite measurements of Antarctic total ozone’. Geophys. Res. Lett., 15, pp. 196–7.CrossRefGoogle Scholar
Farman, J.C., Gardiner, B.G. & Shanklin, J.D. (1985). Large losses of total ozone reveal seasonal ClOx/NOx interaction. Nature (London), 315, pp. 207–10.CrossRefGoogle Scholar
Farmer, C.B., Toon, G.C., Schaper, P.W., Blavier, J.-F. & Lowes, L.L. (1987). Stratospheric trace gases in the spring 1986 Antarctic atmosphere. Nature (London), 329. Pp. 126–31.CrossRefGoogle Scholar
Fleig, A.J., Bhartia, P.K. & Silberstein, D.S. (1986). An assessment of the long-term drift in SBUV total ozone data, based on comparison with the Dobson network. Geophys. Res. Lett., 13, pp. 1359–62.CrossRefGoogle Scholar
Hamill, P., Toon, O.B. & Turco, R.P. (1986). Characteristics of polar stratospheric clouds during the formation of the Antarctic ozone hole. Geophys. Res. Lett., 13, pp. 1343–6.CrossRefGoogle Scholar
Harris, N. & Rowland, F.S. (1988). Unpublished Data Analysis. Described briefly in testimony to US Senate by F.S. Rowland. 22 10 1987.Google Scholar
Hofmann, D.J., Harder, J.W., Rolf, S.R. & Rosen, J.M. (1987). Balloonborne observations of the development and vertical structure of the Antarctic ozone hole in 1986. Nature (London), 326, pp. 5962.CrossRefGoogle Scholar
IMOS (1975). Fluorocarbons and the Environment: Report of Federal Task Force on Inadvertent Modification of the Stratosphere. Council on Environmental Quality, Federal Council for Science and Technology, Washington, DC, USA: 150 pp.Google Scholar
Isaksen, I.S.A. & Stordal, F. (1986). Ozone perturbations by enhanced levels of CFCs, N2O and CH4: A two-dimensional diabatic circulation study including uncertainty estimates. J. Geophys. Res., 91, pp. 5249–63.CrossRefGoogle Scholar
Jesson, J.P. (1982). Halocarbons. Pp. 2963. in Stratospheric Ozone and Man, Vol. II (Eds Bower, F.A. & Ward, R.B.). CRC Press, Boca Raton, Florida, USA: [xiii +] 263 pp.Google Scholar
Jesson, J.P. & Glasgow, L.C. (1977). The fluorocarbon-ozone theory, II: Tropospheric lifetimes—an estimate of the tropospheric lifetime of CCl3F. Atmos. Environ., 11, pp. 499510.CrossRefGoogle Scholar
Jones, P.D., Wigley, T.M.L. & Wright, P.B. (1986). Global temperature variations between 1861 and 1984. Nature (London), 322, pp. 430–4.CrossRefGoogle Scholar
Keeling, CD., Carter, A.F. & Mook, W.G. (1984). Seasonal, latitudinal and secular variations in the abundance and isotope ratios of atmospheric CO2. J. Geophys. Res., 89, pp. 4615–28.CrossRefGoogle Scholar
Keys, J.S. & Johnston, P.V. (1986). Stratospheric NO2 and O3 in Antarctica: Dynamic and chemically controlled variations. Geophys. Res. Lett., 13, pp. 1260–3.CrossRefGoogle Scholar
London, J. & Angell, J.K. (1982). The observed distribution of ozone and its variations. Pp. 742 in Stratospheric Ozone and Man, Vol. I (Eds Bower, F.A. & Ward, R.B.). CRC Press, Boca Raton, Florida, USA: [xiii +] 217 pp.Google Scholar
McCormick, M.P., Steele, H.M., Hamill, P., Chu, W.P. & Swissler, T.J. (1982). Polar stratospheric cloud sightings by SAM II. J. Atmos. Sci., 3, pp. 1387–97.2.0.CO;2>CrossRefGoogle Scholar
McElroy, M.B., Salawitch, R.J., Wofsy, S.C. & Logan, J.A. (1986). Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature (London), 321, pp. 759–62.CrossRefGoogle Scholar
Mckenzie, R.L. & Johnston, P.V. (1984). Springtime stratospheric NO2 in Antarctica. Geophys. Res. Lett., 11, pp. 73–5.CrossRefGoogle Scholar
Mahlman, J.D. & Fels, S.B. (1986). Antarctic ozone decreases: A dynamical cause? Geophys. Res. Lett., 13, pp. 1316–9.CrossRefGoogle Scholar
Makide, Y. & Rowland, F.S. (1982). Tropospheric concentrations of methylchloroform, CH3CCl3, in January 1978, and estimates of the atmospheric residence-times for hydrohalocarbons. Proc. Nat. Acad. Sci. US, 78, pp. 1366–70.Google Scholar
Molina, L.T. & Molina, M.J. (1987). Production of Cl2O2 from the self-reaction of the ClO radical. J. Phys. Chem., 91, pp. 433–6.CrossRefGoogle Scholar
Molina, L.T., Molina, M.J. & Rowland, F.S. (1982). Ultraviolet absorption cross-sections for several brominated methanes and ethanes of atmospheric interest. J. Phys. Chem., 86, pp. 2672–6.CrossRefGoogle Scholar
Molina, M.J. & Rowland, F.S. (1974). Stratospheric sink for chlorofluoromethanes: chlorine atom catalysed destruction of ozone. Nature (London), 249, pp. 810–2.CrossRefGoogle Scholar
Molina, M.J., Tso, T.-L., Molina, L.T. & Wang, F.C.-Y. (1987). Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride and ice: release of active chlorine. Science, 238, pp. 1253–7.CrossRefGoogle ScholarPubMed
Mount, G.H., Sanders, R.W., Schmeltekopf, A.L. & Solomon, S. (1987). Visible spectroscopy at McMurdo station, Antarctica, 1: Overview and daily variations of NO2 and O3, Austral spring, 1986. J. Geophys. Res., 92, 8320–8.CrossRefGoogle Scholar
NAS (1976). Halocarbons: Environmental Effects ofChlorofluoromethane Release. Committee on Impacts of Stratospheric Change, ix + 125 pp.; Halocarbons: Effects on Stratospheric Ozone, Panel on Atmospheric Chemistry, xv + 352 pp. National Academy of Sciences, Washington, DC, USA.Google Scholar
NAS (1979). Stratospheric Ozone Depletion by Halocarbons: Chemistry and Transport. Panel on Stratospheric Chemistry and Transport, xi + 238 pp.; Protection Against Depletion of Stratospheric Ozone by Chlorofluorocarbons, Committee on Impacts of Stratospheric Change and Committee on Alternatives for the Reduction of Chlorofluorocarbon Emissions, xvii + 392 pp. National Academy of Sciences, Washington, DC, USA.Google Scholar
NAS (1982). Causes and Effects of Stratospheric Ozone Reduction: An Update. Committee on Chemistry and Physics of Ozone Depletion and Committee on Biological Effects of Increased Solar Ultraviolet Radiation, xi + 339 pp. National Academy of Sciences, Washington, DC, USA.Google Scholar
NAS (1984). Causes and Effects of Changes in Stratospheric Ozone, xi + 254 pp. National Academy of Sciences, Washington, DC, USA.Google Scholar
Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., Fraser, P. & Rosen, R. (1987). Atmospheric trends in methylchloroform and the global average for the hydroxyl radical. Science, 238, pp. 945–50.CrossRefGoogle ScholarPubMed
Ramanathan, V. (1975). Greenhouse effect due to chlorofluorocarbons: Climatic implications. Science, 190, pp. 50–2.CrossRefGoogle Scholar
Ramanathan, V., Cicerone, R.J., Singh, H.B. & Kiehl, J.T. (1985). Trace gas trends and their potential role in climate change. J. Geophys. Res., 90, pp. 5547–66.CrossRefGoogle Scholar
Rowland, F.S. (1986). Chlorofluorocarbons and the Antarctic ‘ozone hole’. Environmental Conservation, 13, 193–4, fig.CrossRefGoogle Scholar
Rowland, F.S. & Molina, M.J. (1975). Chlorofluoromethanes in the environment. Rev. Geophys. Space Phys., 13, pp. 135.CrossRefGoogle Scholar
Rowland, F.S. & Molina, M.J. (1976). Estimated future atmospheric concentrations of CCl3F (Fluorocarbon-11) for various hypothetical tropospheric removal rates. J. Phys. Chem., 80, pp. 2049–56.CrossRefGoogle Scholar
Rowland, F.S. & Sato, H. (1984). [Presentation at the International Meeting on Current Issues in Our Understanding of the Stratosphere and the Future of the Ozone Layer.] Feldafing, West Germany, 11–16 06 1984.Google Scholar
Rowland, F.S., Sato, H., Khwaja, J. & Elliott, S.M. (1986). The hydrolysis of chlorine nitrate, and its possible atmospheric significance. J. Phys. Chem., 90, pp. 1985–8.CrossRefGoogle Scholar
Solomon, P., Connor, B., Zafra, R.L. de, Parrish, A., Barrett, J. & Jaramillo, M. (1987). High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: Secular variation. Nature (London), 328, pp. 411–3.CrossRefGoogle Scholar
Solomon, S., Garcia, R.R., Rowland, F.S. & Wuebbles, D.J. (1986). On the depletion of Antarctic ozone. Nature (London), 321, pp. 755–8.CrossRefGoogle Scholar
Solomon, S., Mount, G., Sanders, R.W. & Schmeltekopf, A. (1987). Visible spectroscopy at McMurdo station, Antarctica, 2: Observations of OClO. J. Geophvs. Res., 92, pp. 8329–38.CrossRefGoogle Scholar
Stolarski, R.S. & Cicerone, R.J. (1974). Stratospheric chlorine: A possible sink for ozone. Can. J. Chem., 52, pp. 1610–5.CrossRefGoogle Scholar
Stolarski, R.S. & Schoeberl, M.R. (1986). Further interpretation of satellite measurements of Antarctic total ozone. Geophys. Res. Lett., 13, pp. 1210–2.CrossRefGoogle Scholar
Stolarski, R.S., Krueger, A.J., Schoeberl, M.R., McPeters, R.D., Newman, P.A. & Alpert, J.C. (1986). Nimbus-7 satellite measurements of the springtime Antarctic ozone decrease. Nature (London), 322, pp. 808–11.CrossRefGoogle Scholar
Tolba, M.K. (1987). Guest comment: The ozone agreement — and beyond. Environmental Conservation, 14(4), pp. 287–90.CrossRefGoogle Scholar
Tolbert, M.A., Rossi, M.J., Malhotra, R. & Golden, D.M. (1987). Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures. Science, 238, pp. 1258–60.CrossRefGoogle Scholar
Tung, K.K., Ko, M.K.W., Rodriguez, J.M. & Sze, N.D. (1986). Are Antarctic ozone variations a manifestation of dynamics or chemistry? Nature (London), 333, pp. 811–4.CrossRefGoogle Scholar
Watson, R.T. & Albritton, D. (1987). Press conference held on 30 September 1987 at Greenbelt, Maryland, to discuss the results from the 1987 ground-based expedition to McMurdo, Antarctica, and the 1987 aircraft expedition flying over Antarctica from Punta Arenas, Chile. No formal papers have been published by the scientific investigators themselves.Google Scholar
WMO-NASA (1986). Atmospheric Ozone 1985: A Statement of Our Understanding of the Processes Controlling its Present Distribution and Change. World Meteorological Organization, Geneva, Switzerland: Report No. 16, 3 volumes, 1150 pp. all with prelim. and suppl. (reference list) pages and unnumbered illustrations.Google Scholar
Wuebbles, D.J., Connell, P. & Rowland, F.S. (1984). [Presentation at the International Meeting on Current Issues in Our Understanding of the Stratosphere and the Future of the Ozone Layer.] Feldafing, West Germany, 11–16 06 1984.Google Scholar
Zafra, R.L. de, Jaramillo, R.L., Parrish, A., Solomon, P., Connor, B. & Barrett, J. (1987). High concentrations of chlorine monoxide at low altitudes in the Antarctic spring stratosphere: diurnal variation. Nature (London), 328, pp. 408–11.CrossRefGoogle Scholar