Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T07:28:28.822Z Has data issue: false hasContentIssue false

Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes

Published online by Cambridge University Press:  30 March 2017

POLIANA MENDES
Affiliation:
Theoretical, Metacommunities and Landscape Ecology laboratory, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II, Goiânia, Goiás, 74690-000, Brazil
PAULO DE MARCO*
Affiliation:
Theoretical, Metacommunities and Landscape Ecology laboratory, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus II, Goiânia, Goiás, 74690-000, Brazil
*
*Correspondence: Prof Paulo De Marco Jr e-mail: [email protected]

Summary

Climate variables are commonly used to predict suitability for species occurrence, but local processes, such as landscape changes, may affect habitat suitability. We identified levels of exposure to deforestation of suitable climatic areas for eight bat species in the Brazilian Cerrado and explored how sensitivity to land-use changes could reduce their persistence. We created scenarios of sensitivity to land-use changes using theoretical species persistence thresholds to natural vegetation loss in landscapes (70%, 50% and 30% of loss). We also assessed sensitivity to land-use changes using empirical data. Species are under higher exposure to land-use changes in the southern Cerrado, a region more affected by humans due to its proximity to major urban areas. Changes in land use in the Cerrado mostly affect Myotis nigricans, Artibeus cinereus and Platyrrhinus lineatus. Empirically derived scenarios encountered significant thresholds at 50% of natural vegetation loss in landscapes for Artibeus lituratus and P. lineatus. Deforestation has already affected a half of the Cerrado area, but in terms of possibly vulnerable suitable areas, a larger proportion has been lost, amounting to up to 80% of the suitable area. We propose that information on species-specific sensitivity thresholds to habitat loss and on the exposure of suitable landscapes to land-use changes can be useful to assessing species vulnerability.

Type
Non-Thematic Papers
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892917000194

References

Aguiar, L.M.S., Bernard, E. & Machado, R.B. (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia 31: 223229.Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.CrossRefGoogle Scholar
Andrén, H. (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355366.CrossRefGoogle Scholar
Avila-Cabadilla, L.D., Sanchez-Azofeifa, G.A., Stoner, K.E., Alvarez-Añorve, M.Y., Quesada, M. & Portillo-Quintero, C.A. (2012) Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE 7: e335228.Google Scholar
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P, Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modeling 222: 18101819.CrossRefGoogle Scholar
Bernard, E., Aguiar, L.M. & Machado, R.B. (2011) Discovering the Brazilian bat fauna: a task for two centuries? Mammal Review 41: 2339.Google Scholar
Betts, M.G., Fahrig, L., Hadley, A.S., Halstead, K.E., Bowman, J., Robinson, W.D., Wiens, J.A. & Lindenmayer, D.B. (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37: 517527.CrossRefGoogle Scholar
Blamires, D., Oliveira, G., Barreto, B.S. & Diniz-Filho, J.A.F. (2008) Habitat use and deconstruction of richness patterns in Cerrado birds. Acta Oecologica 33: 97104.CrossRefGoogle Scholar
Brown, J.H. (1984) On the relationship between abundance and distribution of species. The American Naturalist 124: 255279.Google Scholar
Cardillo, M., Mace, G.M., Gittleman, J.L. & Purvis, A. (2006) Latent extinction risk and the future battlegrounds of mammal conservation. Proceedings of the National Academy of Sciences of the United States of America 103: 41574161.CrossRefGoogle ScholarPubMed
Carvalho, F.M.V., De Marco, P. & Ferreira, L.G. (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biological Conservation 142: 13921403.CrossRefGoogle Scholar
Carvalho, S.B., Brito, J.C., Pressey, R.L., Crespo, E. & Possingham, H.P. (2010) Simulating the effects of using different types of species distribution data in reserve selection. Biological Conservation 143: 426438.Google Scholar
Colwell, R.K., Rangel, T.F., Grinnell, J. & Elton, C. (2009) Hutchinson's duality: the once and future niche. Proceedings of the National Academy of Sciences of the United States of America 106: 1965119658.Google Scholar
Cuervo, J.J. & Møller, A.P. (2013) Temporal variation in population size of European bird species: effects of latitude and marginality of distribution. PLoS ONE 8: e77654.Google Scholar
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332: 5358.CrossRefGoogle Scholar
Diniz-Filho, J.A.F., Bini, L.M., Vieira, C.M., Blamires, D., Terribile, L.C., Bastos, R.P., Oliveira, G. & Souza, B. (2008) Spatial patterns of terrestrial vertebrate species richness in the Brazilian Cerrado. Zoological Studies 47: 146157.Google Scholar
Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen, B. (2014) Defaunation in the Anthropocene. Science 345: 401406.CrossRefGoogle ScholarPubMed
Duchamp, J.E. & Swihart, R.K. (2008) Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landscape Ecology 23: 849860.Google Scholar
Estrada-Villegas, S., McGill, B.J. & Kalko, E.K.V. (2012) Climate, habitat, and species interactions at different scales determine the structure of a Neotropical bat community. Ecology 93: 11831193.Google Scholar
Fahrig, L. (2001) How much habitat is enough? Biological Conservation 100: 6574.CrossRefGoogle Scholar
Faleiro, F.V., Machado, R.B. & Loyola, R.D. (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation 158: 248257.Google Scholar
Farneda, F.Z., Rocha, R., Lopez-Baucells, A., Groenenbert, M., Silva, I., Palmeirim, J.M., Bobrowiec, P.E.D. & Meyer, C.F.J. (2015) Trait-related responses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology 52: 13811391.Google Scholar
Ferrier, S. (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51: 331363.Google Scholar
Foden, W.B., Butchart, S.H.M., Stuart, S.N., Vié, J.C., Akçakaya, H.R., Angulo, A., De Vantier, L.M., Gutsche, A., Turak, E., Cao, L., Donner, S.D., Katariya, V., Bernard, R., Holland, R.A., Hughes, A.F., O'Hanlon, S.E., Garnett, S.T., Şekercioǧlu, Ç.H. & Mace, G.M. (2013) Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8: e65427.Google Scholar
Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A, Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. & Snyder, P.K. (2005) Global consequences of land use. Science 309: 570574.Google Scholar
García-Morales, R., Badano, E.I. & Moreno, C.E. (2013) Response of Neotropical bat assemblages to human land use. Conservation Biology 27: 10961106.CrossRefGoogle ScholarPubMed
Gardner, A.L. (2007) Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. New York, NY: Chicago Press.Google Scholar
Gorresen, P.M., Willig, M.R. & Strauss, R.E. (2005) Multivariate analysis of scale-dependent associations between bats and landscape structure. Ecological Applications 15: 21262136.Google Scholar
Haddad, N.M., Brudvig, L.A., Clobert, J., Davies, K.F., Gonzalez, A., Holt, R.D., Lovejoy, T.E., Sexton, J.O., Austin, M.P., Collins, C.D., Cook, W.M., Damschen, E.I., Ewers, R.M., Foster, B.L., Jenkins, C.N., King, A.J., Laurance, W.F., Levey, D.J., Margules, C.R., Melbourne, B.A., Nicholls, A.O., Orrock, J.L., Song, D.-X. & Townshend, J.R. (2015) Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1: e1500052.Google Scholar
Henle, K., Davies, K.F., Kleyer, M., Margules, C. & Settele, J. (2004) Predictors of species sensitivity to fragmentation. Biodiveristy and Conservation 13: 207251.CrossRefGoogle Scholar
Huggett, A.J. (2005) The concept and utility of ecological thresholds in biodiversity conservation. Biological Conservation 124: 301310.Google Scholar
Jiménez-Valverde, A., Peterson, A., Soberón, J., Overton, J.M., Aragón, P. & Lobo, J.M. (2011) Use of niche models in invasive species risk assessments. Biological Invasions 13: 27852797.Google Scholar
Jones, G., Jacobs, D., Kunz, T., Willig, M. & Racey, P. (2009) Carpe noctem: the importance of bats as bioindicators. Endangered Species Research 8: 93115.Google Scholar
Kerr, J.T., Kharouba, H.M. & Currie, D.J. (2007) The macroecological contribution to global change solutions. Science 316: 15811584.Google Scholar
Klingbeil, B.T. & Willig, M.R. (2010) Seasonal differences in population-, ensemble- and community-level responses of bats to landscape structure in Amazonia. Oikos 119: 16541664.Google Scholar
Klink, C.A. & Machado, R.B. (2005) Conservation of the Brazilian Cerrado. Conservation Biology 19: 707713.Google Scholar
Liu, C., White, M. & Newell, G. (2011) Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34: 232243.Google Scholar
López-González, C., Presley, S.J., Lozano, A., Stevens, R.D. & Higgins, C.L. (2014) Ecological biogeography of Mexican bats: the relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography 38: 261272.Google Scholar
Mehr, M., Brandl, R., Hothorn, T., Dziock, F., Förster, B. & Müller, J. (2011) Land use is more important than climate for species richness and composition of bat assemblages on a regional scale. Mammalian Biology 76: 451460.Google Scholar
Mendes, P., With, K.A., Signorelli, L. & De Marco, P. Jr (2017) The relative importance of local versus landscape variables on site occupancy in bats of the Brazilian Cerrado. Landscape Ecology doi:10.1007/s10980-016-0483-6.CrossRefGoogle Scholar
Muggeo, V.M.R. (2016) Segmented: an R package to fit regression models with broken-line relationships segmented. R News 8: 2025.Google Scholar
Murphy, G.E.P. & Romanuk, T.N. (2014) A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution 4: 91103.CrossRefGoogle ScholarPubMed
Muylaert, R.L., Stevens, R.D. & Ribeiro, M.C. (2016) Threshold effect of habitat loss on bat richness in Cerrado-forest landscapes. Ecological Applications 26: 18541867.CrossRefGoogle ScholarPubMed
Oprea, M., Mendes, P., Vieira, T.B. & Ditchfield, A.D. (2009) Do wooded streets provide connectivity for bats in an urban landscape? Biodiversity and Conservation 18: 23612371.Google Scholar
Pearce, J. & Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133: 225245.Google Scholar
Peterson, G.D., Cumming, G.S. & Carpenter, S.R. (2003) Scenario planning: a tool for conservation in an uncertain world. Conservation Biology 17: 358366.CrossRefGoogle Scholar
Rompré, G., Robinson, W.D., Desrochers, A. & Angehr, G. (2009) Predicting declines in avian species richness under nonrandom patterns of habitat loss in a Neotropical landscape. Ecological Applications;19: 16141627.Google Scholar
Rueda, M., Hawkins, B.A., Morales-Castilla, I., Vidanes, R.M., Ferrero, M. & Rodríguez, M.Á. (2013) Does fragmentation increase extinction thresholds? A European-wide test with seven forest birds. Global Ecology and Biogeography 22: 12821292.CrossRefGoogle Scholar
Sano, E.E., Rosa, R., Brito, J.L.S. & Ferreira, L.G. (2010) Land cover mapping of the tropical savanna region in Brazil. Environment Monitoring Assessment 166: 113124.CrossRefGoogle ScholarPubMed
Soberón, J. (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 11151123.Google Scholar
Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America 106: 1964419650.Google Scholar
Stevens, R.D. (2013) Gradients of bat diversity in Atlantic Forest of South America: environmental seasonality, sampling effort and spatial autocorrelation. Biotropica 45: 764770.Google Scholar
Swift, T.L. & Hannon, S.J. (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biological Reviews 85: 3553.Google Scholar
Talamoni, S., Coelho, D., Dias-Silva, L. & Amaral, A. (2013) Bat assemblages in conservation areas of a metropolitan region in Southeastern Brazil. Brazilian Journal of Biology 73: 309319.CrossRefGoogle ScholarPubMed
Thomas, C.D. (2010) Climate, climate change and range boundaries. Diversity and Distributions 16: 488495.Google Scholar
Toms, J.D. & Villard, M. (2015) Threshold detection: matching statistical methodology to ecological. Avian Conservation and Ecology 10: 2.Google Scholar
Trevelin, L.C., Silveira, M., Port-Carvalho, M., Homem, D.H. & Cruz-Neto, A.P. (2013) Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. Forest Ecology and Management 291: 136143.Google Scholar
Wiens, J.J., Ackerly, D.D., Allen, B.L., Buckley, L.B., Cornell, H.V., Damschen, E.I., Davies, T.J., Grytnes, J.-A., Harrison, S.P., Hawkins, B.A., Holt, R.D., Mccain, C.M. & Stephens, P.R. (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters 13: 13101324.CrossRefGoogle ScholarPubMed
Weber, M.M., Stevens, R., Diniz-Filho, J.A.F. & Grelle, C.E.V. (2016) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 39: 112.Google Scholar
Zortéa, M. & Alho, C.J.R. (2008) Bat diversity of a Cerrado habitat in central Brazil. Biodiversity and Conservation 17: 791805.Google Scholar
Supplementary material: File

Mendes and De Marco supplementary material S1

Appendix

Download Mendes and De Marco supplementary material S1(File)
File 17 KB
Supplementary material: File

Mendes and De Marco supplementary material S2

Supplementary Figure

Download Mendes and De Marco supplementary material S2(File)
File 4.2 MB
Supplementary material: File

Mendes and De Marco supplementary material S3

Supplementary Figure

Download Mendes and De Marco supplementary material S3(File)
File 14.6 MB
Supplementary material: File

Mendes and De Marco supplementary material S4

Supplementary Figure

Download Mendes and De Marco supplementary material S4(File)
File 1.5 MB
Supplementary material: File

Mendes and De Marco supplementary material S5

Supplementary Figure

Download Mendes and De Marco supplementary material S5(File)
File 1.6 MB
Supplementary material: File

Mendes and De Marco supplementary material S6

Supplementary Table

Download Mendes and De Marco supplementary material S6(File)
File 13 KB
Supplementary material: File

Mendes and De Marco supplementary material S7

Supplementary Table

Download Mendes and De Marco supplementary material S7(File)
File 14.6 KB
Supplementary material: File

Mendes and De Marco supplementary material S8

Supplementary Table

Download Mendes and De Marco supplementary material S8(File)
File 15.7 KB