Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:33:15.220Z Has data issue: false hasContentIssue false

Using extinctions in species distribution models to evaluate and predict threats: a contribution to plant conservation planning on the island of Sardinia

Published online by Cambridge University Press:  13 March 2017

MAURO FOIS
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
GIANLUIGI BACCHETTA
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
ALBA CUENA-LOMBRAÑA
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
DONATELLA COGONI*
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
MARIA SILVIA PINNA
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
ELENA SULIS
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy
GIUSEPPE FENU
Affiliation:
Centro Conservazione Biodiversità (CCB), Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Viale S. Ignazio da Laconi 11–13, 09123, Cagliari, Italy Dipartimento di Biologia Ambientale, ‘Sapienza’ Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
*
*Correspondence: Donatella Cogoni email: [email protected]

Summary

Recent extinction rates suggest that humans are now causing the sixth mass extinction, and the Mediterranean islands are at the forefront of many of the environmental issues involved. This study provides an alternative approach for investigating documented local plant extinctions that occurred in Sardinia (western Mediterranean) during the last half century. A total of 190 local extinctions of 62 plant species were used to investigate the independent effects of eight ecological and anthropogenic variables and to model the areas of potential extinctions where plant conservation efforts could be focused. If all analysed plant species were considered together, ecological factors explained local extinctions more than anthropogenic factors. The independent effects of each factor considerably varied among species of different lifeforms and altitude ranges. Accordingly, distribution models of local extinctions outscored areas that are potentially rich in plant species with conservation interest, but which are particularly affected by humans. This paper suggests a reproducible, operational framework for analysing which extinction factors may play important roles in similar contexts and where they might be relevant.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892917000108

References

Alfaro-Saiz, E., García-González, M.E., del Río, S., Penas, Á., Rodríguez, A. & Alonso-Redondo, R. (2014) Incorporating bioclimatic and biogeographic data in the construction of species distribution models in order to prioritize searches for new populations of threatened flora. Plant Biosystems 149: 827837.CrossRefGoogle Scholar
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 12231232.Google Scholar
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 4247.Google Scholar
Arrigoni, P.V. (1983) Aspetti corologici della flora sarda. Lavori Società Italiana di Biogeografia 8: 83109.Google Scholar
Bacchetta, G. (2006) La flora del Sulcis (Sardegna Sud-Occidentale, Italia). Guineana 12: 1350.Google Scholar
Bacchetta, G., Coppi, A., Pontecorvo, C. & Selvi, F. (2008) Systematics, phylogenetic relationships and conservation of the taxa of Anchusa (Boraginaceae) endemic to Sardinia (Italy). Systematics and Biodiversity 6: 161174.CrossRefGoogle Scholar
Bacchetta, G., Fenu, G., Mattana, E. & Pontecorvo, C. (2011) Ecological remarks on Astragalus maritimus and A. verrucosus, two threatened exclusive endemic species of Sardinia. Acta Botanica Gallica 158: 7991.Google Scholar
Bagella, S. & Urbani, M. (2006) Some remarks on the flora and land use in north-western Sardinia. Bocconea 19: 223232.Google Scholar
Barnosky, A.D., Matzke, N., Tomiya, S., Wongan, G.O.U., Quental, B., Marshall, T.B.C. & Mersey, B. (2011) Has the Earth's sixth mass extinction already arrived? Nature 471: 5157.Google Scholar
Bocchieri, E. (1998) On the failure to find plants on some minor islands of Sardinia. Flora Mediterranea 8: 197212.Google Scholar
Buckland, S. T. & Elston, D.A. (1993) Empirical models for the spatial distribution of wildlife. Journal of Applied Ecology 30: 478495.Google Scholar
Cañadas, E.M., Fenu, G., Peñas, J., Lorite, J., Mattana, E. & Bacchetta, G. (2014) Hotspots within hotspots: endemic plant richness, environmental drivers, and implications for conservation. Biological Conservation 170: 282291.Google Scholar
Carrete, M., Grande, J.M., Tella, J.L., Sánchez-Zapata, J.A., Donázar, J.A., Díaz-Delgado, R. & Romo, A. (2007) Habitat, human pressure, and social behavior: partialling out factors affecting large-scale territory extinction in an endangered vulture. Biological Conservation 136: 143154.Google Scholar
Chatterjee, S. & Hadi, A.S. (2006) Simple linear regression. In: Regression Analysis by Example (4th ed.), pp.2151. Hoboken, NJ, USA: John Wiley & Sons.CrossRefGoogle Scholar
Djordjević, V., Tsiftsis, S., Lakušić, D. & Stevanović, V. (2014) Niche analysis of orchids of serpentine and non-serpentine areas: implications for conservation. Plant Biosystems 150: 710719.CrossRefGoogle Scholar
Domina, G., Bazan, G., Campisi, P. & Greuter, W. (2015) Taxonomy and conservation in higher plants and bryophytes in the Mediterranean Area. Biodiversity Journal 6: 197204.Google Scholar
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 4357.Google Scholar
Fenu, G., Cogoni, D., Ulian, T. & Bacchetta, G. (2013) The impact of human trampling on a threatened coastal Mediterranean plant: the case of Anchusa littorea Moris (Boraginaceae). Flora 208: 104110.Google Scholar
Fenu, G., Fois, M., Cañadas, E.M. & Bacchetta, G. (2014) Using endemic-plant distribution, geology and geomorphology in biogeography: the case of Sardinia (Mediterranean Basin). Systematics and Biodiversity 12: 181193.Google Scholar
Fenu, G., Fois, M., Cogoni, D., Porceddu, M., Pinna, M.S., Cuena-Lombraña, A., Nebot, A., Sulis, E., Picciau, R., Santo, A., Murru, V., Orrù, M. & Bacchetta, G. (2015) The Aichi Biodiversity Target 12 at regional level: an achievable goal? Biodiversity 16: 120135.Google Scholar
Fenu, G., Mattana, E. & Bacchetta, G. (2012) Conservation of endemic insular plants: the genus Ribes L. (Grossulariaceae) in Sardinia. Oryx 46: 219222.Google Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 3849.Google Scholar
Fois, M., Cuena-Lombraña, A., Fenu, G., Cogoni, D. & Bacchetta, G. (2016a) The reliability of conservation status assessments at regional level: past, present and future perspectives on Gentiana lutea L. ssp. lutea in Sardinia. Journal for Nature Conservation 33: 19.Google Scholar
Fois, M., Fenu, G. & Bacchetta, G. (2016b) Global analyses underrate part of the story: finding applicable results for the conservation planning of small Sardinian islets’ flora. Biodiversity and Conservation 25: 10911106.Google Scholar
Fois, M., Fenu, G., Cuena-Lombraña, A., Cogoni, D. & Bacchetta, G. (2015) A practical method to speed up the discovery of unknown populations using species distribution models. Journal for Nature Conservation 24: 4248.Google Scholar
Franklin, J. (2010) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge University Press.Google Scholar
Greuter, W. (1994) Extinctions in Mediterranean areas. Philosophical Transactions of the Royal Society of London B: Biological Sciences 344: 4146.Google Scholar
He, K.S., Bradley, B.A., Cord, A.F., Rocchini, D., Tuanmu, M.N., Schmidtlein, S., Turner, W., Wegmann, M. & Pettorelli, N. (2015) Will remote sensing shape the next generation of species distribution models? Remote Sensing in Ecology and Conservation 1: 418.Google Scholar
Heikkinen, R.K., Marmion, M. & Luoto, M. (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35: 276288.CrossRefGoogle Scholar
Hijmans, R.J., van Etten, J., Mattiuzzi, M., Sumner, M., Greenberg, J.A., Lamigueiro, O.P., Bevan, A., Racine, E.B. & Shortridge, A. (2015) Package ‘Raster’ [www document]. URL https://cran.r-project.org/web/packages/raster/index.html Google Scholar
Iliadou, E., Kallimanis, A.S., Dimopoulos, P. & Panitsa, M. (2014) Comparing the two Greek archipelagos plant species diversity and endemism patterns highlight the importance of isolation and precipitation as biodiversity drivers. Journal of Biological Research (Thessaloniki, Greece) 21: 16.Google Scholar
Imbert, E., Youssef, S., Carbonell, D. & Baumel, A. (2011) Do endemic species always have a low competitive ability? A test for two Mediterranean plant species under controlled conditions. Journal of Plant Ecology 7: 403412.Google Scholar
ISTAT (2001) Popolazione per sesso, età e stato civile nelle province e nei grandi comuni: anno 2001. Stime regionali al 1.1.2001. Rome, Italy: ISTAT.Google Scholar
IUCN (2016) The IUCN Red List of threatened species. Version 2015-4 [www document]. URL http://www.iucnredlist.org Google Scholar
Joppa, L.N., Roberts, D.L. & Pimm, S.L. (2011) How many species of flowering plants are there? Proceedings of the Royal Society of London B: Biological Sciences: 278: 554559.Google Scholar
Kaky, E. & Gilbert, F. (2016) Using species distribution models to assess the importance of Egypt's protected areas for the conservation of medicinal plants. Journal of Arid Environments 135: 140146.Google Scholar
Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. (2005) Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115‐year study in the Mediterranean region. Journal of Biogeography 32: 799811.Google Scholar
López-Tirado, J. & Hidalgo, P.J. (2015) Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century. New Forests 47: 411429.Google Scholar
MacNally, R. (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ models. Biodiversity and Conservation 9: 655671.Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. (2009) Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15: 5969.Google Scholar
Marquardt, D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12: 591612.Google Scholar
May, R.M., Lawton, J.H. & Stork, N.E. (1995) Assessing extinction rates. In: Extinction Rates, eds. Lawton, J.H. & May, R.M., pp. 124. New York, NY, USA: Oxford University Press.Google Scholar
Morris, W.F. & Doak, D.F. (2002) Quantitative Conservation Biology: The Theory and Practice of Population Viability Analysis. Sunderland, MA, USA: Sinauer Associates.Google Scholar
Naimi, B. & Araújo, M.B. (2016) Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39: 368375.Google Scholar
Nakamura, M., del Monte-Luna, P., Lluch-Belda, D. & Lluch-Cota, S.E. (2013) Statistical inference for extinction rates based on last sightings. Journal of Theoretical Biology 333: 166173.Google Scholar
Pignatti, E., Pignatti, S. & Ladd, P.G. (2002) Comparison of ecosystems in the Mediterranean Basin and Western Australia. Plant Ecology 163: 177186.Google Scholar
Pisanu, S., Farris, E., Caria, M.C., Filigheddu, R.S., Urbani, M. & Bagella, S. (2014) Vegetation and plant landscape of Asinara National Park. Plant Sociology 51: 3157.Google Scholar
Pons, E.C., Clarisó, I.E., Casademont, M.C. & Arguimbau, P.F. (2013) Islands and Plants: Preservation and Understanding of Flora on Mediterranean Islands. 2nd Botanical Conference in Menorca Proceedings and Abstracts. Menorca, Spain: Colleciò Recerca.Google Scholar
Pungetti, G., Marini, A. & Vogiatzakis, I.N. (2008) Sardinia. In: Mediterranean Island Landscapes: Natural and Cultural Approaches (Vol. 9), eds. Pungetti, G. & Mannion, A.M., pp. 143169. Dordrecht: The Netherlands: Springer.Google Scholar
Quantum GIS Development Team (2014) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project [www document]. URL http://www.qgis.org Google Scholar
Raunkiaer, C. (1934) The Life Forms of Plants and Statistical Plant Geography. Oxford, UK: Clarendon Press.Google Scholar
Renton, M., Shackelford, N. & Standish, R.J. (2014) How will climate variability interact with long-term climate change to affect the persistence of plant species in fragmented landscapes? Environmental Conservation 41: 110121.Google Scholar
Core Team, R (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [www document]. URL http://www.R-project.org Google Scholar
Torres, I., Urbieta, I.R. & Moreno, J.M. (2012) Vegetation and soil seed bank relationships across microhabitats in an abandoned Quercus suber parkland under simulated fire. Ecoscience 19: 110.Google Scholar
Tzanopoulos, J., Mitchley, J. & Pantis, J. (2005) Modelling the effects of human activity on the vegetation of a northeast Mediterranean island. Applied Vegetation Science 8: 2738.Google Scholar
van Proosdij, A.S.J., Sosef, M.S.M., Wieringa, J.J. & Raes, N. (2015) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39: 542552.Google Scholar
Walsh, C. & MacNally, R. (2013) hier.part: Hierarchical Partitioning. R package version 1.0-4 [www document]. URL http://cran.r-project.org Google Scholar
WCS & CIESIN (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) [www document]. URL http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic Google Scholar
Zoppi, C. & Lai, S. (2012) Empirical evidence on agricultural land-use change in Sardinia, Italy, from GIS-based analysis and a Tobit model. Cartographica 47: 211227.Google Scholar
Supplementary material: File

Fois supplementary material

Table S1

Download Fois supplementary material(File)
File 18.4 KB
Supplementary material: File

Fois supplementary material

Table S2

Download Fois supplementary material(File)
File 25.6 KB
Supplementary material: PDF

Fois supplementary material

Table S3

Download Fois supplementary material(PDF)
PDF 2.1 MB