Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T20:30:57.272Z Has data issue: false hasContentIssue false

Similar vegetation structure in protected and non-protected wetlands in Central Brazil: conservation significance

Published online by Cambridge University Press:  22 April 2015

SUZANA N. MOREIRA*
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, PO Box 486 Belo Horizonte, MG, Brazil
PEDRO V. EISENLOHR
Affiliation:
Universidade do Estado de Mato Grosso, Faculdade de Ciências Biológicas e Agrárias, Campus de Alta Floresta, PO Box 324, Alta Floresta, MT, Brazil
ARNILDO POTT
Affiliation:
Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, PO Box 554, Campo Grande, MS, Brazil
VALI J. POTT
Affiliation:
Universidade Federal de Mato Grosso do Sul, Centro de Ciências Biológicas e da Saúde, PO Box 554, Campo Grande, MS, Brazil
ARY T. OLIVEIRA-FILHO
Affiliation:
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, PO Box 486 Belo Horizonte, MG, Brazil
*
*Correspondence: Suzana N. Moreira Tel +55 31 3409-2688 Fax +55 31 3409-2688 e-mail: [email protected]

Summary

Appropriate legislation based on in-depth ecological evidence is essential for ecosystem conservation. Wetland areas in the Brazilian Cerrado hotspot are facing difficulties in terms of status under environmental law: only those wetlands with the palm Mauritia flexuosa (veredas) are recognized as protected. Comprehensive fieldwork in central-western Brazil (72 50-m transects) coupled with both exploratory and confirmatory analyses showed that communities with (MP) and without (MA) M. flexuosa are similar in terms of the floristics and ecology. The results demonstrate that the analysed wetlands are part of a continuum, in which a gradual replacement of species and community structure occurs without a pattern related to physiognomy. Considering such floristic and structure patterns when legally defining the ecosystem would promote a more comprehensive and realistic view of the ecosystem's characteristics and functions, and result in laws with a stronger scientific support. Conservationists should further examine the lack of consistent separation of plant community attributes between the MP and MA areas, and reconsider the scientific definition of veredas.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.J. & Legendre, P. (1999) An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. Journal of Statistical Computation and Simulation 62: 271303.CrossRefGoogle Scholar
APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 16: 105121.Google Scholar
Araújo, G.M., Barbosa, A.A., Arantes, A.A. & Amaral, A.F. (2002) Composição florística de veredas no município de Uberlândia, MG. Revista Brasileira de Botânica 25: 475493.Google Scholar
Barbosa, A.S. (2005) Prefácio. In: Tantos Cerrados: múltiplas abordagens sobre a biodiversidade e singularidade cultural, ed. Almeida, M.G., pp. 1118. Goiania, Brazil: Vieira.Google Scholar
Bean, M.J. (2009) The Endangered Species Act: science, policy, and politics. Annals of the New York Academy of Sciences 1162: 369391.CrossRefGoogle ScholarPubMed
Blanchet, F.G., Legendre, P. & Borcard, D. (2008) Forward selection of explanatory variables. Ecology 89: 26232632.Google Scholar
Braun-Blanquet, J. (1979) Fitosociología: bases para el estudio de las comunidades vegetales. Madrid, Spanish: H. Blume Ediciones.Google Scholar
Carvalho, P.G.S. (1991) As veredas e sua importância no domínio dos cerrados. Informe Agropecuário 168: 4754.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117143.Google Scholar
CONAMA (2012) Lei no. 12.651, de 25 de maio de 2012. Conselho Nacional do Meio Ambiente, Brasília, Brazil [www document]. URL http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm Google Scholar
Defra (2003) Delivering the Evidence: Defra's Science and Innovation Strategy, 2003–2006. London, UK: Department for the Environment, Food and Rural Affairs.Google Scholar
Dray, S., Legendre, P. & Peres-Neto, P.R. (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling 196: 483493.CrossRefGoogle Scholar
Dybas, C.L. (2006) Biodiversity: the interplay of science, valuation, and policy. BioScience 56: 792798.CrossRefGoogle Scholar
Esri (2010) ArcView®GIS, version 3.2a. New York, NY, USA: Environmental Systems Research Institute, Inc.Google Scholar
Ewel, K.C. (1991) Ecosystem experiments in wetlands. In: Ecosystem Experiments, ed. Money, H. A., pp. 181–101. Chichester, UK: John Wiley & Sons.Google Scholar
Ganem, R.S. & Drummond, J.A. (2011) Biologia da Conservação: as bases científicas da proteção da biodiversidade. In: Conservação da Biodiversidade e Políticas Públicas, ed. Ganem, R.S., pp. 1146. Brasília, Brazil: Edições Câmaras.Google Scholar
Guimarães, A.J.M., Araújo, G.M. & Corrêa, G.F. (2002) Estrutura fitossociológica em área natural e antropizada de uma vereda em Uberlândia, MG. Acta Botanica Brasilica 16: 317329.CrossRefGoogle Scholar
Habel, J.C., Gossner, M.M., Meyer, S.T., Eggermont, H., Lens, L., Dengler, J. & Weisser, W.W. (2013) Mind the gaps when using science to address conservation concerns. Biodiversity and Conservation 2: 24132427.Google Scholar
Hammer, O., Harper, D.A.T. & Rian, P.D. (2001) Past: paleontological statistics software package for education and data analysis [www document]. URL http://palaeo-electronica.org/2001_1/past/issue1_01.htm Google Scholar
Hickman, C.A. (1990) Forested-wetland trends in the United States: an economic perspective. Forest Ecology and Management 33–34: 227238.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Juarez, K.M. & Marinho-Filho, J.S. (2002) Diet, habitat use, and home ranges of sympatric canids in Central Brazil. Journal of Mammalogy 83: 925933.Google Scholar
Kent, M. (2011) Vegetation Description and Data Analysis. A Practical Approach. Chichester, UK: John Wiley & Sons.Google Scholar
Kuniy, A.A, Yamashita, C. & Gomes, E.P.C. (2001) Estudo do aproveitamento de frutos da palmeira erivá (Syagrus romanzoffiana) por Anadorhynchus hyacinthinus, A . leari e Ara ararauna. Ararajuba 9:19123.Google Scholar
Legendre, P. & Gallagher, E. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271280.CrossRefGoogle ScholarPubMed
Legendre, P. & Legendre, L. (2012) Numerical Ecology. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
McCune, B. & Grace, J.B. (2002) Analysis of Ecological Communities. Gleneden Beach, USA: MjM Software Design.Google Scholar
McCune, B. & Mefford, M.J. (2011) PC-ORD: Multivariate Analysis of Ecological Data, Version 6.0. Gleneden Beach, USA: MjM Software.Google Scholar
Meirelles, M.L., Oliveira, R.C., Vivaldi, L.J., Santos, A.R. & Correia, J.R. (2002) Espécies do estrato herbáceo e profundidade do lençol freático em áreas úmidas do cerrado. Boletim de Pesquisa e Desenvolvimento. Planaltina, Brazil: Embrapa Cerrados.Google Scholar
Meirelles, M.L., Guimarães, A.J.M., Oliveira, C.O., Araújo, G.M. & Walter, J.F. (2004) Impactos sobre o estrato herbáceo de Áreas Úmidas do Cerrado. In: Cerrado: ecologia e caracterização, ed. Aguiar, L.M.S. & Camargo, A.J.A., pp. 4168. Brasília, Brazil: Embrapa Cerrados.Google Scholar
Melo, A. (2008) O que ganhamos ‘confundindo’ riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotropica 8: 2127.Google Scholar
Metzger, J.P. (2010) O Código Florestal tem base científica? Natureza & Conservação 8: 15.Google Scholar
Metzger, J.P., Lewinsohn, T.M., Joly, C.A., Verdade, L.M., Martinelli, L.A. & Rodrigues, R.R. (2010) Brazilian law: full speed in reverse? Science 329: 276277.Google Scholar
MOBOT (2013) Missouri Botanical Garden. Nomenclatural 2013 data base [www document]. URL http://mobot.mobot.org/cgi-bin/search_vast Google Scholar
Munhoz, C.B.R. & Felfili, J.M. (2008) Fitossociologia do estrato herbáceo-subarbustivo em campo limpo úmido no Distrito Federal, Brasil. Acta Botanica Brasilica 22: 905913.Google Scholar
Oliveira, G.C., Araujo, G.M. & Barbosa, A.A.A. (2009) Florística e zonação de espécies vegetais em veredas no Triângulo Mineiro, Brasil. Rodriguésia 60: 10771085.CrossRefGoogle Scholar
Oliveira-Filho, A.T. & Ratter, J.A. (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: The Cerrados of Brazil, ed. Oliveira, P.S. & Marquis, R.J., pp. 91120. New York, NY, USA: Columbia University Press.Google Scholar
Peres-Neto, P.R. & Legendre, P. (2010) Estimating and controlling for spatial structure in the study of ecological communities. Global Ecology and Biogeography 19: 174184.Google Scholar
R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [www document]. URL http://www.R-project.org/ Google Scholar
Ramos, M.V.V., Cury, N., Mota, P.E.F., Vitorino, A.C.T., Ferreira, M.N. & Silva, M.L.N. (2006) Veredas do Triângulo Mineiro: Solos, água e uso. Ciência Agrotécnica 30: 283293.Google Scholar
Ribeiro, J.F. & Walter, B.M. (2008) As principais fitofisionomias do Cerrado. In: Cerrado: ecologia e flora, ed. Sano, S.M., Almeida, S.P. & Ribeiro, J.F., pp. 153212. Planaltina, Brazil: Embrapa Cerrados.Google Scholar
Rull, V. (1998) Biogeographical and evolutionary considerations on Mauritia (Arecaceae), based on palynological evidence. Review of Palaeobotany and Palynology 100: 109122.Google Scholar
Santos, F.F.M. & Munhoz, C.B.R. (2012) Diversidade de espécies herbáceo-arbustivas e zonação florística em uma vereda no Distrito Federal. Heringeriana 6: 2127.Google Scholar
Sutherland, W.J., Armstrong-Brown, S., Armsworth, P.R., Tom, B., Brickland, J., Campbell, C.D., Chamberlain, D.E., Cooke, A.I., Dulvy, N.K., Dusic, N.R., et al. (2006) The identification of 100 ecological questions of high policy relevance in the UK. Journal of Applied Ecology 43: 617627.Google Scholar
Thiers, B. (2015) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium, NY, USA [www document]. URL http://sweetgum.nybg.org/ih/ Google Scholar
Tóthmérész, B. (1995) Comparison of different methods for diversity ordering. Journal of Vegetation Science 6: 283290.CrossRefGoogle Scholar
Trabucco, A. & Zomer, R.J. (2010) Global soil water balance geospatial database. CGIAR Consortium for Spatial Information [www document]. URL http://www.cgiar-csi.org Google Scholar
Supplementary material: File

Moreira supplementary material

Tables S1-S3 and Figures S1-S4

Download Moreira supplementary material(File)
File 705.4 KB