Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T04:58:21.582Z Has data issue: false hasContentIssue false

Economic valuation of changes in ecosystem services of 77 Ramsar wetlands in West Asia over 37 years (1984–2021)

Published online by Cambridge University Press:  19 September 2024

Qadir Ashournejad*
Affiliation:
Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Iran
Fateme Garshasbi
Affiliation:
Department of Geography and Urban Planning, Faculty of Humanities and Social Sciences, University of Mazandaran, Babolsar, Iran
*
Corresponding author: Qadir Ashournejad; Email: [email protected]

Summary

In the West Asia region, the vulnerability of Ramsar Convention wetlands due to unsustainable utilization driven by water scarcity continues to grow. Here, a global surface water product generated by the European Joint Research Centre was used to assess changes in surface water in 77 wetlands listed under the Ramsar Convention over a 37-year period (1984–2021). By combining this product with a quantitative valuation model, estimates were made of the economic value of the ecosystem services provided by these wetlands, enabling the determination of the economic losses resulting from any reduction in surface water. We show that 20% (7550 km2) of permanent surface waters in Ramsar sites have disappeared or are no longer classified as permanent. Based on this, USD 106 billion of the economic value of wetlands ecosystem services have been lost. Additionally, 33% (12 100 km2) of seasonal surface waters in these wetlands have experienced a decrease in area. Iran and Iraq account for 90% of water losses, primarily in 34 wetlands (30 in Iran and 4 in Iraq). These findings underscore the urgent need for water management policies and conservation strategies in the West Asia region.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Nasrawi, AK, Fuentes, I, Al-Shammari, D (2021) Changes in Mesopotamian wetlands: investigations using diverse remote sensing datasets. Wetlands 41: 94.CrossRefGoogle Scholar
Aquino, DS, Sica, YV, Quintana, RD, Gavier-Pizarro, G (2021) Non-monotonic vegetation activity trends in the Lower Delta of the Paraná River: masking evidence of wetland degradation. Remote Sensing Applications: Society and Environment 24: 100626.CrossRefGoogle Scholar
Arkema, KK, Verutes, GM, Wood, SA, Clarke-Samuels, C, Rosado, S, Canto, M et al. (2015) Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proceedings of the National Academy of Sciences of the United States of America 112: 73907395.CrossRefGoogle ScholarPubMed
Ashournejad, Q, Amiraslani, F, Moghadam, MK, Toomanian, A (2019) Assessing the changes of mangrove ecosystem services value in the Pars Special Economic Energy Zone. Ocean & Coastal Management 179: 104838.CrossRefGoogle Scholar
Aylward, B, Barbier, EB (1992) Valuing environmental functions in developing countries. Biodiversity & Conservation 1: 3450.CrossRefGoogle Scholar
Ballut-Dajud, GA, Sandoval Herazo, LC, Fernández-Lambert, G, Marín-Muñiz, JL, López Méndez, MC, Betanzo-Torres, EA (2022) Factors affecting wetland loss: a review. Land 11: 434.CrossRefGoogle Scholar
Bridgewater, P, Kim, RE (2021) 50 years on, w(h)ither the Ramsar Convention? A case of institutional drift. Biodiversity and Conservation 30: 39193937.CrossRefGoogle Scholar
Chupin, V, Dolgikh, G, Gusev, E, Timoshina, G (2022) Remote sensing of infrasound signals of the ‘voice of the sea’ during the evolution of typhoons. Remote Sensing 14: 6289.CrossRefGoogle Scholar
Cooley, SW, Smith, LC, Stepan, L, Mascaro, J (2017) Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery. Remote Sensing 9: 1306.CrossRefGoogle Scholar
Costanza, R, d’Arge, R, De Groot, R, Farber, S, Grasso, M, Hannon, B, Van Den Belt, M (1997) The value of the world’s ecosystem services and natural capital. Nature 387: 253260.CrossRefGoogle Scholar
Costanza, R, De Groot, R, Sutton, P, Van der Ploeg, S, Anderson, SJ, Kubiszewski, I, Turner, RK (2014) Changes in the global value of ecosystem services. Global Environmental Change 26: 152158.CrossRefGoogle Scholar
Daily, GC, Alexander, S, Ehrlich, PR, Goulde, L, Lubchenco, J, Matson, PA et al. (1997) Ecosystem services: benefits supplied to human societies by natural ecosystems. Issues in Ecology 2: 116.Google Scholar
Dervisoglu, A (2021) Analysis of the temporal changes of inland Ramsar sites in Turkey using Google Earth Engine. ISPRS International Journal of Geo-Information 10: 521.CrossRefGoogle Scholar
Duku, E, Mattah, PAD, Angnuureng, DB (2022) Assessment of wetland ecosystem services and human wellbeing nexus in sub-Saharan Africa: empirical evidence from a socio-ecological landscape of Ghana. Environmental and Sustainability Indicators 15: 100186.CrossRefGoogle Scholar
Ehsani, AH, Shakeryari, M (2021) Monitoring of wetland changes affected by drought using four Landsat satellite data and fuzzy ARTMAP classification method (case study Hamoun wetland, Iran). Arabian Journal of Geosciences 14: 1363.CrossRefGoogle Scholar
Ferral, A, Luccini, E, Aleksinkó, A, Scavuzzo, CM (2019) Flooded-area satellite monitoring within a Ramsar wetland Nature Reserve in Argentina. Remote Sensing Applications: Society and Environment 15: 100230.CrossRefGoogle Scholar
Gardner, RC, Finlayson, C (2018) Global wetland outlook. In: State of the World’s Wetlands and Their Services to People (pp. 88–100). Gland, Switzerland: Ramsar Convention Secretariat Publications.Google Scholar
Guo, H, Fu, W, Liu, G (2019) Scientific satellite and moon-based earth observation for global change. In: Development of Earth Observation Satellites (pp. 3149). Singapore: Springer Singapore Publications.Google Scholar
Hossain, MS, Hashim, M (2019) Potential of Earth observation (EO) technologies for seagrass ecosystem service assessments. International Journal of Applied Earth Observation and Geoinformation 77: 1529.CrossRefGoogle Scholar
Hu, S, Niu, Z, Chen, Y, Li, L, Zhang, H (2017) Global wetlands: potential distribution, wetland loss, and status. Science of the Total Environment 586: 319327.CrossRefGoogle ScholarPubMed
Junk, WJ, An, S, Finlayson, CM, Gopal, B, Květ, J, Mitchell, SA, Robarts, RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75: 151167.CrossRefGoogle Scholar
Kharazmi, R, Tavili, A, Rahdari, MR, Chaban, L, Panidi, E, Rodrigo-Comino, J (2018) Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental Monitoring and Assessment 190: 123.CrossRefGoogle ScholarPubMed
Li, X, Yu, X, Hou, X, Liu, Y, Li, H, Zhou, Y, Zhang, L (2020) Valuation of wetland ecosystem services in national nature reserves in China’s coastal zones. Sustainability 12: 3131.CrossRefGoogle Scholar
Lin, L, Di, L, Tang, J, Yu, E, Zhang, C, Rahman, MS et al. (2019) Improvement and validation of NASA/MODIS NRT global flood mapping. Remote Sensing 11: 205.CrossRefGoogle Scholar
Madani, K (2014) Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences 4: 315328.CrossRefGoogle Scholar
Mao, D, Wang, Z, Wang, Y, Choi, CY, Jia, M, Jackson, MV, Fuller, RA (2021) Remote observations in China’s Ramsar sites: wetland dynamics, anthropogenic threats, and implications for sustainable development goals. Journal of Remote Sensing 2021: 113.CrossRefGoogle Scholar
Millennium Ecosystem Assessment (2005). Millennium Ecosystem Assessment synthesis report [www document]. URL www.millenniumassessment.org Google Scholar
Mouchet, MA, Lamarque, P, Martín-López, B, Crouzat, E, Gos, P, Byczek, C, Lavorel, S (2014) An interdisciplinary methodological guide for quantifying associations between ecosystem services. Global Environmental Change 28: 298308.CrossRefGoogle Scholar
Mozafari, M, Hosseini, Z, Fijani, E, Eskandari, R, Siahpoush, S, Ghader, F (2022) Effects of climate change and human activity on lake drying in Bakhtegan Basin, southwest Iran. Sustainable Water Resources Management 8: 109.CrossRefGoogle Scholar
Munishi, S, Jewitt, G (2019) Degradation of Kilombero Valley Ramsar wetlands in Tanzania. Physics and Chemistry of the Earth 112: 216227.CrossRefGoogle Scholar
Pekel, JF, Cottam, A, Gorelick, N, Belward, AS (2016) High-resolution mapping of global surface water and its long-term changes. Nature 540: 418422.CrossRefGoogle ScholarPubMed
Phelps, KL, Hamel, L, Alhmoud, N, Ali, S, Bilgin, R, Sidamonidze, K et al. (2019) Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11: 240.CrossRefGoogle ScholarPubMed
Rahimi, E, Jahandideh, M, Dong, P, Ahmadzadeh, F (2023) Potential anthropogenic and climatic factors affecting Iran’s international wetlands. Journal of Environmental Studies and Sciences 13: 557574.CrossRefGoogle Scholar
Sharma, B, Rasul, G, Chettri, N (2015) The economic value of wetland ecosystem services: evidence from the Koshi Tappu Wildlife Reserve, Nepal. Ecosystem Services 12: 8493. https://doi.org/10.1016/j.ecoser.2015.02.007 CrossRefGoogle Scholar
Sharma, S, Phartiyal, M, Madhav, S, Singh, P (2021) Wetlands conservation: current challenges and future strategies. In: Sharma, S, Singh, P (eds), Categorization, Distribution and Global Scenario (pp. 116). Hoboken, NJ, USA: John Wiley & Sons Publications.Google Scholar
Smardon, RC (2009) Sustaining the world’s wetlands. In: International Wetland Policy and Management Issues (pp. 120). Chicago, IL, USA: University of Chicago Publications.Google Scholar
Sogno, P, Klein, I, Kuenzer, C (2022) Remote sensing of surface water dynamics in the context of global change – a review. Remote Sensing 14: 2475.CrossRefGoogle Scholar
Song, F, Su, F, Mi, C, Sun, D (2021) Analysis of driving forces on wetland ecosystem services value change: a case in northeast China. Science of the Total Environment 751: 141778.CrossRefGoogle Scholar
Sutton, PC, Anderson, SJ, Costanza, R, Kubiszewski, I (2016) The ecological economics of land degradation: impacts on ecosystem service values. Ecological Economics 129: 182192. https://doi.org/10.1016/j.ecolecon.2016.06.016 CrossRefGoogle Scholar
The Economics of Ecosystems and Biodiversity (2010) TEEB: Mainstreaming the economics of nature [www document]. URL https://teebweb.org Google Scholar
Topal, T, Baykal, MT (2023) Monitoring the changes of Lake Uluabat Ramsar site and its surroundings in the 1985–2021 period using RS and GIS methods. Global Nest Journal 25: 103114.Google Scholar
Turpie, J, Lannas, K, Scovronick, N, Louw, A (2010) Wetland valuation volume I: Wetland ecosystem services and their valuation: a review of current understanding and practice. In: Malan, H (ed.), Wetland Health and Important Research Programme (pp. 13). Pretoria, South Africa: Water Research Commission Publications.Google Scholar
Van Oudenhoven, APE, Schröter, M, Drakou, EG, Geijzendorffer, IR, Jacobs, S, van Bodegom, PM et al. (2018) Key criteria for developing ecosystem service indicators to inform decision making. Ecological Indicators 95: 417426.CrossRefGoogle Scholar
Xu, T, Guo, Z, Xia, Y, Ferreira, VG, Liu, S, Wang, K et al. (2019a) Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology 578: 124105.CrossRefGoogle Scholar
Xu, T, Weng, B, Yan, D, Wang, K, Li, X, Bi, W, Liu, Y (2019b) Wetlands of international importance: status, threats, and future protection. International Journal of Environmental Research and Public Health 16: 1818.CrossRefGoogle ScholarPubMed
Yagmur, N, Musaoglu, N (2020) Temporal analysis of ramsar sites via remote sensing techniques – a case study of Meke Maar. IOP Conference Series: Materials Science and Engineering 737: 012248.CrossRefGoogle Scholar
Zhao, X, Liang, S, Liu, S, Yuan, W, Xiao, Z, Liu, Q, Yu, K (2013) The Global Land Surface Satellite (GLASS) remote sensing data processing system and products. Remote Sensing 5: 24362450.CrossRefGoogle Scholar
Supplementary material: File

Ashournejad and Garshasbi supplementary material

Ashournejad and Garshasbi supplementary material
Download Ashournejad and Garshasbi supplementary material(File)
File 5 MB