Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T03:27:16.229Z Has data issue: false hasContentIssue false

Towards safer vectors for the field release of recombinant bacteria

Published online by Cambridge University Press:  15 October 2002

John Davison*
Affiliation:
Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, INRA-Versailles, 78026 Versailles Cedex, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The prospect of the deliberate environmental release of genetically manipulated microorganisms has given rise to a great deal of polemic. Amongst the rational scientific concerns are those concerned with the fate of the released bacteria, the fate of the recombinant genes that they carry, the selective pressures acting upon them in different environmental situations and the long term effects on the environment and human health. All recombinant DNA is carried by vectors (plasmids, transposons or bacteriophage or remnants of these). Thus the way in which recombinant constructions are made may itself lead to potential biosafety concerns, irrespective of the host bacterium and the recombinant DNA fragment of primary interest. The purpose of the present review is to assess progress in improved vector design aimed at eliminating risks due to the way recombinant vectors are constructed. Improved vector constructions include the avoidance of the use, or removal, of antibiotic resistance genes, the use of defective transposons rather than plasmids in order to reduce horizontal transfer and the development of conditionally lethal suicide systems. More recently, new site-specific recombination systems have permitted transposon vectors to be manipulated following strain construction, but before environmental release, so that virtually all recombinant DNA not directly involved in the release experiment is eliminated. Such bacteria are thus pseudo-wild type in that they contain no heterologous DNA other than the genes of interest.

Type
Review Article
Copyright
© ISBR, EDP Sciences, 2002

References

Ahrenholtz, I, Lorenz, MG, Wackernagel, W (1994) A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl. Environ. Microbiol. 60: 3746-3751
Ayres, EK, Thomson, VJ, Merino, G, Balderes, D, Figurski, DH (1993) Precise deletions in large bacterial genomes by vector-mediated excision (VEX). The trfA gene of promiscuous plasmid RK2 is essential for replication in several Gram-negative hosts. J. Mol. Biol. 230: 174-185 CrossRef
Barbosa, TM, Levy, SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 3: 303-311 CrossRef
Bej AK, Molin S, Perlin M, Atlas RM (1992) Maintenance and killing efficiency of conditional lethal constructs in Pseudomonas putida. J. Ind. Microbiol. 10: 79-85
Bumann, D, Hueck, C, Aebischer, T, Meyer, TF (2000) Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol. Med. Microbiol. 27: 357-364 CrossRef
Cherepanov, PP, Wackernagel, W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9-14 CrossRefPubMed
Dammann-Kalinowski, T, Niemann, S, Keller, M, Selbitschka, W, Tebbe, CC, Pühler, A (1996) Characterization of two bioluminescent Rhizobium meliloti strains constructed for field releases. Appl. Microbiol. Biotechnol. 45: 509-512
Davies, JE (1997) Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Found Symp. 207: 15-27
Davison, J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73-91 CrossRef
Davison, J. (2002) Genetic Tools for Pseudomonads, Rhizobia and other Gram-negative Bacteria: a Review. Biotechniques 32: 386-401
Davison J, Brunel F, Kone K, Chevalier N (1990) Recombinant DNA Vectors for Pseudomonas. In: Silver S, Chakrabarty AM, Iglewski B, Kaplan S, eds, Pseudomonas, Biotransformations, Pathogenesis and Evolving Biotechnology. American Society for Microbiology, pp 242-251
de Lorenzo, V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol. 12: 365-371 CrossRef
de Lorenzo, V, Timmis, KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 235: 386-405 CrossRef
de Lorenzo, V, Herrero, M, Jakubzik, U, Timmis, KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572 CrossRef
de Lorenzo, V, Herrero, M, Sanchez, JM, Timmis, KN (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol. Ecol. 27: 211-224 CrossRef
Diaz, E, Munthali, M, de Lorenzo, V, Timmis, KN (1994) Universal barrier to lateral spread of specific genes among microorganisms. Mol. Microbiol. 13: 855-861 CrossRef
Govan, JR, Hughes, JE, Vandamme, P (1996) Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol. 45: 395-407 CrossRef
Haas, D, Blumer, C, Keel, C (2000) Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr. Opin. Biotechnol. 11: 290-297 CrossRef
Hansen LH, Sorensen SJ, Jensen LB (1997) Chromosomal insertion of the entire Escherichia coli lactose operon, into two strains of Pseudomonas, using a modified mini-Tn5 delivery system. Gene 186: 167-173 CrossRef
Herrero, M, de Lorenzo, V, Timmis, KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172: 6557-6567 CrossRef
Hoang, TT, Karkhoff-Schweizer, RR, Kutchma, AJ, Schweizer, HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86 CrossRef
Hoang, TT, Kutchma, AJ, Becher, A, Schweizer, HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43: 59-72 CrossRef
Holmes, A, Govan, J, Goldstein, R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg. Infect. Dis. 4: 221-227 CrossRef
Hooton, TM, Levy, SB (2001) Antimicrobial resistance: a plan of action for community practice. Am. Fam. Physician 63: 1087-1098
Jensen, LB, Ramos, JL, Kaneva, Z, Molin, S (1993) A substrate-dependent biological containment system for Pseudomonas putida based on the Escherichia coli gef gene. Appl. Environ. Microbiol. 59: 3713-3717
Jensen, RB, Gerdes, K (1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17: 205-210 CrossRef
Kaniga, K, Davison, J (1991) Transposon vectors for stable chromosomal integration of cloned genes in rhizosphere bacteria. Gene 100: 201-205 CrossRef
Kappeli, O, Auberson, L (1997) The science and intricacy of environmental safety evaluations. Trends Biotechnol. 15: 342-349 CrossRef
Klemm, P, Jensen, LB, Molin, S (1995) A stochastic killing system for biological containment of Escherichia coli. Appl. Environ. Microbiol. 61: 481-486
Knudsen, S, Saadbye, P, Hansen, LH, Collier, A, Jacobsen, BL, Schlundt, J, Karlstrom, OH (1995) Development and testing of improved suicide functions for biological containment of bacteria. Appl. Environ. Microbiol. 61: 985-991
Kok, M, Rekik, M, Witholt, B, Harayama, S (1994) Conversion of pBR322-based plasmids into broad-host-range vectors by using the Tn3 transposition mechanism. J. Bacteriol. 176: 6566-6571 CrossRef
Kristensen, CS, Eberl, L, Sanchez-Romero, JM, Givskov, M, Molin, S, de Lorenzo, V (1995) Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J. Bacteriol. 177: 52-58 CrossRef
Matic, I, Taddei, F, Radman, M (1996) Genetic barriers among bacteria. Trends Microbiol. 4: 69-72 CrossRef
Miller, H (1997) The, EPA's war on bioremediation. Nat. Biotechnol. 15: 486 CrossRef
Molin, S, Boe, L, Jensen, LB, Kristensen, CS, Givskov, M, Ramos, JL, Bej, AK (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu. Rev. Microbiol. 47: 139-166 CrossRef
Molina, L, Ramos, C, Ronchel, MC, Molin, S, Ramos, JL (1998) Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl. Environ. Microbiol. 64: 2072-2078
Munthali M, Timmis KN, Diaz E (1996) Restricting the dispersal of recombinant DNA: Design of a contained biological catalyst. Biotechnology (NY) 14: 189-191 CrossRef
Panke, S, Sanchez-Romero, JM, de Lorenzo, V (1998) Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through an ortho-cleavage degradation pathway. Appl. Environ. Microbiol. 64: 748-751
Pieper, DH, Reineke, W (2000) Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11: 262-270 CrossRef
Raaijmakers, JM, Bitter, W, Punte, HL, Bakker, PA, Weisbeek, PJ, Schippers, B (1994) Siderophore receptor PupA as a marker to monitor wild-type Pseudomonas putida WCS358 in natural environments. Appl. Environ. Microbiol. 60: 1184-1190
Ramos, C, Molina, L, Molbak, L, Ramos, JL, Molin, S (2000) A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microbiol. Ecol. 34: 91-102 CrossRef
Ramos JL, Diaz E, Dowling D, de Lorenzo V, Molin S, O'Gara F, Ramos C, Timmis KN (1994) The behavior of bacteria designed for biodegradation. Biotechnology (NY) 12: 1349-1356 CrossRef
Ronchel, MC, Molina, L, Witte, A, Lutbiz, W, Molin, S, Ramos, JL, Ramos, C (1998) Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl. Environ. Microbiol. 64: 4904-4911
Ronchel, MC, Ramos, JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl. Environ. Microbiol. 67: 2649-2656 CrossRef
Saint CP, Alexander S, McClure NC (1995) pTIM3, a plasmid delivery vector for a transposon-based inducible marker gene system in Gram-negative bacteria. Plasmid, 34: 165-174 CrossRef
Sanchez-Romero, JM, Diaz-Orejas, R, de Lorenzo, V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl. Environ. Microbiol. 64: 4040-4046
Sayler, GS, Ripp, S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 11: 286-289 CrossRef
Soberon-Chavez, G (1996) Evaluation of the biological containment system based on the Escherichia coli gef gene in Pseudomonas aeruginosa W51D. Appl. Microbiol. Biotechnol. 46: 549-553
Szafranski, P, Mello, CM, Sano, T, Smith, CL, Kaplan, DL, Cantor, CR (1997) A new approach for containment of microorganisms: dual control of streptavidin expression by antisense RNA and the T7 transcription system. Proc. Natl. Acad. Sci. USA 94: 1059-1063 CrossRef
Taghavi, S, Delanghe, H, Lodewyckx, C, Mergeay, M, Der Lelie, DD (2001) Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl. Environ. Microbiol. 67: 1015-1019 CrossRef
Top, E, Mergeay, M, Springael, D, Verstraete, W (1990) Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl. Environ. Microbiol. 56: 2471-2479
Torres, B, Jaenecke, S, Timmis, KN, Garcia, JL, Diaz, E (2000) A gene containment strategy based on a restriction-modification system. Environ. Microbiol. 2: 555-563 CrossRef
Wang, IN, Smith, DL, Young, R (2000) Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54: 799-825 CrossRef
Zuo, J, Niu, QW, Ikeda, Y, Chua, NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr. Opin. Biotechnol. 13: 173-180 CrossRef